This study deals with the surface and electrochemical characterization of mild steel surfaces after plasma-enhanced chemical vapour deposition of organosilicon films, performed in order to increase corrosion resistance. Coating deposition was performed in a home-made reactor with hexamethyldisiloxane-oxygen-argon mixtures of different compositions and at different input power values on as-received specimens and after a pretreatment step in oxygen-containing plasma. Surface and morphological characterization of coatings was performed by x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. To evaluate the protective effectiveness, electrochemical characterization of the coatings was carried out in sulphate-containing solutions by electrochemical impedance spectroscopy. Notwithstanding their low thickness of ∼1000 nm, the organosilicon films show protective effectiveness properties against corrosion. An increase of the impedance values, related to an increase in the protective effectiveness, has been observed on films obtained at increasing input power and after O2 plasma pretreatment of the substrate. As shown by FTIR data, the positive effect of increasing input power may be related to the progressive increase of the inorganic nature of the deposited coatings, i.e. increase in SiOx groups and decrease of sylanol groups. Furthermore, as shown by XPS analysis, the good corrosion behaviour of mild steels coated after O2 plasma pretreatment may be attributed to removal of the surface contamination, which improves adhesion of the SiOx film, and to enhancement of the surface oxidation, degree.

Surface analysis of PECVD organosilicon films for corrosion protection of steels substrates / Angelini, EMMA PAOLA MARIA VIRGINIA; D'Agostino, R; Fracassi, F; Grassini, Sabrina; Rosalbino, Francesco. - In: SURFACE AND INTERFACE ANALYSIS. - ISSN 0142-2421. - STAMPA. - 34:1(2002), pp. 155-159. [10.1002/sia.1273]

Surface analysis of PECVD organosilicon films for corrosion protection of steels substrates

ANGELINI, EMMA PAOLA MARIA VIRGINIA;GRASSINI, Sabrina;ROSALBINO, Francesco
2002

Abstract

This study deals with the surface and electrochemical characterization of mild steel surfaces after plasma-enhanced chemical vapour deposition of organosilicon films, performed in order to increase corrosion resistance. Coating deposition was performed in a home-made reactor with hexamethyldisiloxane-oxygen-argon mixtures of different compositions and at different input power values on as-received specimens and after a pretreatment step in oxygen-containing plasma. Surface and morphological characterization of coatings was performed by x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. To evaluate the protective effectiveness, electrochemical characterization of the coatings was carried out in sulphate-containing solutions by electrochemical impedance spectroscopy. Notwithstanding their low thickness of ∼1000 nm, the organosilicon films show protective effectiveness properties against corrosion. An increase of the impedance values, related to an increase in the protective effectiveness, has been observed on films obtained at increasing input power and after O2 plasma pretreatment of the substrate. As shown by FTIR data, the positive effect of increasing input power may be related to the progressive increase of the inorganic nature of the deposited coatings, i.e. increase in SiOx groups and decrease of sylanol groups. Furthermore, as shown by XPS analysis, the good corrosion behaviour of mild steels coated after O2 plasma pretreatment may be attributed to removal of the surface contamination, which improves adhesion of the SiOx film, and to enhancement of the surface oxidation, degree.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1403605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo