A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation considered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation, as well as register design may enhance the decoherence time by several orders of magnitude. This behavior stems from the effective one-dimensional character of the phononic environment in the relevant region of physical parameters.

Subdecoherent information encoding in a quantum-dot array / Zanardi, P.; Rossi, Fausto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 59:12(1999), pp. 8170-8181. [10.1103/PhysRevB.59.8170]

Subdecoherent information encoding in a quantum-dot array

ROSSI, FAUSTO
1999

Abstract

A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation considered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation, as well as register design may enhance the decoherence time by several orders of magnitude. This behavior stems from the effective one-dimensional character of the phononic environment in the relevant region of physical parameters.
File in questo prodotto:
File Dimensione Formato  
Zanardi-Rossi_PRB_59_8170_1999.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 278.69 kB
Formato Adobe PDF
278.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1405208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo