Magnetic power losses have been experimentally investigated and theoretically predicted over a range of frequencies (direct current—1.5 kHz) and peak inductions (0.5–1.5 T) in 1‐mm‐thick FeSi 2 wt. % laminations. The direct current hysteresis properties of the system are described by the Preisach model, with the Preisach distribution function reconstructed from the measurement of the recoil magnetization curve (Bp=1.7 T). On this basis, the time behavior of the magnetic induction vs frequency at different lamination depths is calculated by a finite element method numerical solution of Maxwell equations, which takes explicitly into account the Preisach model hysteretic B(H) relationship. The computed loop shapes are, in general, in good agreement with the measured ones. The power loss dependence on frequency is predicted and experimentally found to change from a ∼f3/2 to a ∼f2 law with increasing peak induction.

Power losses in thick steel laminations with hysteresis / C., Appino; G., Bertotti; O., Bottauscio; F., Fiorillo; P., Tiberto; D., Binesti; J. P., Ducreux; Chiampi, Mario; Repetto, Maurizio. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 79:(1996), pp. 4575-4577. [10.1063/1.361873]

Power losses in thick steel laminations with hysteresis

CHIAMPI, Mario;REPETTO, MAURIZIO
1996

Abstract

Magnetic power losses have been experimentally investigated and theoretically predicted over a range of frequencies (direct current—1.5 kHz) and peak inductions (0.5–1.5 T) in 1‐mm‐thick FeSi 2 wt. % laminations. The direct current hysteresis properties of the system are described by the Preisach model, with the Preisach distribution function reconstructed from the measurement of the recoil magnetization curve (Bp=1.7 T). On this basis, the time behavior of the magnetic induction vs frequency at different lamination depths is calculated by a finite element method numerical solution of Maxwell equations, which takes explicitly into account the Preisach model hysteretic B(H) relationship. The computed loop shapes are, in general, in good agreement with the measured ones. The power loss dependence on frequency is predicted and experimentally found to change from a ∼f3/2 to a ∼f2 law with increasing peak induction.
File in questo prodotto:
File Dimensione Formato  
8520_UPLOAD.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 113.25 kB
Formato Adobe PDF
113.25 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1641889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo