We evaluate the relaxation times for an electrolytic cell subject to a step-like external voltage, in the case in which the mobility of negative ions is different from that of positive ions. The electrodes of the cell, in the shape of a slab, are supposed to be perfectly blocking. The theoretical analysis is performed by assuming that the applied voltage is so small that the fundamental equations of the problem can be linearized. In this framework, the eigenvalues equations defining all relaxation times of the problem are deduced. In the numerical analysis, we solve the complete set of equations describing the time evolution of the system under the action of the external voltage. Two relaxation processes, connected with the ambipolar and free diffusion phenomena, are sufficient to describe the dynamics of the system, when the diffusion coefficients are of the same order of magnitude.

Relaxation times of an electrolytic cell subject to an external electric field: Role of ambipolar and free diffusion phenomena / Alexe Ionescu, Al; Barbero, Giovanni; Lelidis, I; Scalerandi, Marco. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - 111:(2007), pp. 13287-13293. [10.1021/jp0742160]

Relaxation times of an electrolytic cell subject to an external electric field: Role of ambipolar and free diffusion phenomena

BARBERO, GIOVANNI;SCALERANDI, MARCO
2007

Abstract

We evaluate the relaxation times for an electrolytic cell subject to a step-like external voltage, in the case in which the mobility of negative ions is different from that of positive ions. The electrodes of the cell, in the shape of a slab, are supposed to be perfectly blocking. The theoretical analysis is performed by assuming that the applied voltage is so small that the fundamental equations of the problem can be linearized. In this framework, the eigenvalues equations defining all relaxation times of the problem are deduced. In the numerical analysis, we solve the complete set of equations describing the time evolution of the system under the action of the external voltage. Two relaxation processes, connected with the ambipolar and free diffusion phenomena, are sufficient to describe the dynamics of the system, when the diffusion coefficients are of the same order of magnitude.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1660918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo