A hybrid numerical-analytical method for the characterization of the propagation of the transverse-electric surface waves along a high impedance surface (HIS) is presented. The HIS is obtained by a 2-D periodic repetition of a rectangular unit cell on a Cartesian grid. The unit cell consists of a microstrip line with variable width immersed in a grounded multilayer dielectric substrate. Inside the unit cell, the effective value of the dielectric is sinusoidally modulated along the direction of the microstrip line, and the dimension of the unit cell is equal to the period of the modulation. On the basis of the modulation parameters, limits of the stop/pass bands are determined analytically employing Mathieu's functions. The synthesis of the shape of the microstrip line that guarantees the desired modulation requires the numerical determination of the phase velocity - line width relationship which is not known in closed form for the considered unbounded open structure. The limits of the pass/stop bands determined analytically are in very good agreement with those found numerically and measured values for different modulation parameters.

Controlling the Bandlimits of TE-Surface Wave Propagation Along a Modulated Microstrip-Line-Based High Impedance Surface / Matekovits, Ladislau; VIETTI COLOMÈ, G. C.; Orefice, Mario. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 56:(2008), pp. 2555-2562. [10.1109/TAP.2008.927524]

Controlling the Bandlimits of TE-Surface Wave Propagation Along a Modulated Microstrip-Line-Based High Impedance Surface

MATEKOVITS, Ladislau;OREFICE, Mario
2008

Abstract

A hybrid numerical-analytical method for the characterization of the propagation of the transverse-electric surface waves along a high impedance surface (HIS) is presented. The HIS is obtained by a 2-D periodic repetition of a rectangular unit cell on a Cartesian grid. The unit cell consists of a microstrip line with variable width immersed in a grounded multilayer dielectric substrate. Inside the unit cell, the effective value of the dielectric is sinusoidally modulated along the direction of the microstrip line, and the dimension of the unit cell is equal to the period of the modulation. On the basis of the modulation parameters, limits of the stop/pass bands are determined analytically employing Mathieu's functions. The synthesis of the shape of the microstrip line that guarantees the desired modulation requires the numerical determination of the phase velocity - line width relationship which is not known in closed form for the considered unbounded open structure. The limits of the pass/stop bands determined analytically are in very good agreement with those found numerically and measured values for different modulation parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1853833
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo