In 2003 the IAEA has initiated a Coordinated Research Project (CRP) on ‘‘Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste”. Major intermediate results have been obtained and will be reported here. The overall objective of the CRP, performed within the framework of IAEA’s Nuclear Energy’s Department Technical Working Group on Fast Reactors, is to increase the capability of Member States in developing and applying advanced technologies in the area of long-lived radioactive waste utilization and transmutation. Sixteen institutions from 12 member states and one international organization participated in this CRP. The CRP concentrated on the assessment of the dynamic behaviour of various transmutation systems. The reactor systems investigated comprise critical reactors, subcritical accelerator driven systems with heavy liquid metal and gas cooling, critical molten salt systems and hybride fusion/fission systems. Both fertile and fertile-free fuel options have been investigated. For a deep assessment of the transient and safety behaviour, the analytical capabilities have to be qualified. A major effort of the CRP consisted in the benchmarking of steady state core configurations and performing transient/accident simulations. For a general assessment and comparison, the safety coefficients were determined for the individual systems. In a second step transient analyses were performed which reflected the generic behaviour of the various reactors types. In addition the transmutation potential, burn-up behaviour and decay heat of minor actinide bearing fuels were investigated.

REPORT ON INTERMEDIATE RESULTS OF THE IAEA CRP ON STUDIES OF ADVANCED REACTOR TECHNOLOGY OPTIONS FOR EFFECTIVE INCINERATION OF RADIOACTIVE WASTES / W., Maschek; A., Stanculescu; B., Arien; Y., Bai; Chabert, C. H.; A. A., Chebeskov; X., Chen; D. F., DA CRUZ; V., Dekoussar; K., Devan; Dulla, Sandra; V., Gopalakrishnan; O., Feynberg; R., Harish; V., Ignatiev; J., Kópházi; J., Li; E., Malambu; P., Mohanakrishnan; K., Morita; G., Pandikumar; Y., Peneliau; Ravetto, Piero; A., Rineiski; M., Schikorr; R., Srivenkatesan; V., Subbotin; A., Surenkov; M., Szieberth; S., Taczanowski; K., Tu; Ek, ; P., Vertes; M., Vorotyntsev; J., Uhlí; H., Wider; Y., Wu; R., Zakirov; S., Zheng. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - 49:(2008), pp. 1810-1819.

REPORT ON INTERMEDIATE RESULTS OF THE IAEA CRP ON STUDIES OF ADVANCED REACTOR TECHNOLOGY OPTIONS FOR EFFECTIVE INCINERATION OF RADIOACTIVE WASTES

DULLA, SANDRA;RAVETTO, PIERO;
2008

Abstract

In 2003 the IAEA has initiated a Coordinated Research Project (CRP) on ‘‘Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste”. Major intermediate results have been obtained and will be reported here. The overall objective of the CRP, performed within the framework of IAEA’s Nuclear Energy’s Department Technical Working Group on Fast Reactors, is to increase the capability of Member States in developing and applying advanced technologies in the area of long-lived radioactive waste utilization and transmutation. Sixteen institutions from 12 member states and one international organization participated in this CRP. The CRP concentrated on the assessment of the dynamic behaviour of various transmutation systems. The reactor systems investigated comprise critical reactors, subcritical accelerator driven systems with heavy liquid metal and gas cooling, critical molten salt systems and hybride fusion/fission systems. Both fertile and fertile-free fuel options have been investigated. For a deep assessment of the transient and safety behaviour, the analytical capabilities have to be qualified. A major effort of the CRP consisted in the benchmarking of steady state core configurations and performing transient/accident simulations. For a general assessment and comparison, the safety coefficients were determined for the individual systems. In a second step transient analyses were performed which reflected the generic behaviour of the various reactors types. In addition the transmutation potential, burn-up behaviour and decay heat of minor actinide bearing fuels were investigated.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1854568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo