Motor units distribution and recruitment order retrieved from force / M-wave relationship during stimulated contraction

Original Citation:

Availability:
This version is available at: http://porto.polito.it/1919726/ since: February 2009

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

(Article begins on next page)
1. INTRODUCTION

Transcutaneous electrical stimulation (TES) of the peripheral nervous system is widely applied to investigate or improve muscle function. The synchronous activation of muscle fibres is most likely achieved by stimulating the motoneuron terminal branches [1]. Getting a deeper insight into the mechanisms by which the delivered current pulse induces the activation of the muscle fibres is crucial for the better exploitation of the TES. This work investigates the mechanism underlying TES using both electrical and mechanical responses (i.e., surface potential, referred to as M-wave, and torque, respectively), using simulated and experimental data from tibialis anterior (TA) muscle.

2. METHODS

Experimental data collection and processing

Eight healthy male subjects participated in the study. The dominant leg was placed in an isometric brace and the foot was fixed to a plate (Figure 1A). A load cell fixed to the plate measured the force generated during the contractions. Biphasic stimulation currents at 20pps for 3 s were applied to the motor point of the TA muscle with different amplitudes (1.7 mA step) in different stimulation sets, with 1 minute rest (Figure 1B). Surface EMG signals were detected over the TA muscle with a linear array of 8 electrodes 5 mm apart in single differential (SD) configuration aligned to the muscle fibres. Variables of interest were average rectified value (ARV), mean frequency (MNF), conduction velocity (CV), and force.

Simulation of electrical and mechanical responses

M-waves were simulated by a model of electrical stimulation [2] and a simulator of surface EMG (including skin 1 mm thick, fat with thickness in the range 2-8 mm, and muscle extending to infinity). Known conductivity data were used to simulate the current distribution induced by stimulation. The selection of elicited MUs was determined considering the current density distribution in the territory of each MU and the excitation threshold characteristic of the MU. The action potentials of the elicited MUs were added up to simulate M-waves. Exerted force was simulated by adding the contribution of each of the elicited MUs, estimated on the basis of a model of muscle force in isometric conditions.

3. RESULTS

In order to compare different subjects and simulations, a normalisation procedure was applied

Values of ARV of M waves

![Figure 3](Image) M-wave, ARV and force versus stimulation amplitude of tibialis anterior muscle, during transcutaneous stimulation at different stimulation levels in a representative subject.

Fig. 3. M-wave, ARV and force versus stimulation amplitude of tibialis anterior muscle, during transcutaneous stimulation at different stimulation levels in a representative subject.

4. CONCLUSIONS

Two variables provide important indications on MU recruitment during TES and MU distribution within the muscle: CV variation of M-waves and concavity of force curve for increasing stimulation intensity. Experimental data showed an increase of CV with increasing stimulation intensity and a positive concavity (mean across eight subjects) of the force/stimulation intensity curve. The effects of different recruitment orders (random excitation threshold, higher threshold for larger MUs or for smaller MUs) and different MU distributions in the muscle (random distribution, larger or smaller MI deeper) were tested in simulations. CV variations and concavity of force/stimulation intensity were in line with experiments only if larger MUs were distributed deep within the muscle (in line with a histochemical study [3]), regardless of the distribution of MU recruitment thresholds (Figure 7). Thus, the geometrical distribution of the MUs is crucial in determining the order of recruitment of MUs during TES (it is more important than MU recruitment threshold). This provides an interpretation of the controversial results reviewed in the literature on MU recruitment during stimulation.

References


Acknowledgements

Work supported by the European Space Agency Project “MESM” (ESA-AO-LS-99-MAP-MED-028).