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Generalized Maxwell distribution function is derived analytically for the lattice Boltzmann (LB)
method. All the previously introduced equilibria for LB are found as special cases of the generalized
Maxwellian. The generalized Maxwellian is used to derive an new class of multiple-relaxation-time
LB models and prove the H–theorem for them.

PACS numbers: 47.11.-j, 05.20.Dd

A branch of kinetic theory - the lattice Boltzmann (LB)
method - has recently met with a remarkable success
as a powerful alternative for solving the hydrodynamic
Navier–Stokes equations, with applications ranging from
large Reynolds number flows to flows at a micron scale,
porous media, and multiphase flows see, e. g., [1–3] and
references therein. The LB method solves a fully dis-
crete kinetic equation for populations fα(x, t), designed
in a way that it reproduces the Navier–Stokes equations
in the hydrodynamic limit in D dimensions. Populations
correspond to discrete velocities vα for α = 0, 1, ..., Q−1,
which fit into a regular spatial lattice with the nodes
x. This enables a simple and highly efficient algorithm
based on (a) nodal relaxation and (b) streaming along the
links of the regular spatial lattice. On the other hand,
numerical stability of the LB method remains a critical
issue [2]. Recalling the role played by the Boltzmann’s
H–theorem in enforcing macroscopic evolutionary con-
straints (the second law of thermodynamics), pertinent
entropy functions have been proposed [4–8]. The full
connection of LB to kinetic theory was established by
the discrete-velocity analog of the Maxwellian (see Eq.
(2) below).

Admittedly, however, that other heuristic methods
were proposed recently to enhance stability of LB. The
rationale behind one of them, the multiple–relaxation–
time (MRT) [9–11], is sound: Since the incompressible
flow is the only concern, the bulk viscosity arising in the
quasi-compressible LB scheme can be viewed as a free
parameter and tuned in order to enhance stability. How-
ever, in spite of popularity of the MRT method, to date,
it cannot be considered as a consistent kinetic theory
but rather a numerical trick where tuning of parameters
is based on experience rather than on physics.

In this paper, we present a new consideration of the LB
models, and derive a crucial result: the closed-form gen-
eralized equilibrium (see Eq. (3) below). The generalized
equilibrium is the analog of the anisotropic Gaussian, and
is a long-needed relevant distribution in the LB method.
This finding further allows us to introduce an innovative
class of entropy-based MRT LB models which enjoy both
the H–theorem and the additional free–tunable parame-
ter for controlling the bulk viscosity, where the range is

dictated by the entropy.
For the sake of presentation and without any loss of

generality, we consider the popular nine-velocity model,
the so-called D2Q9 lattice, of which the discrete velocities
are: v0 = (0, 0), vi = (±c, 0) and (0, ±c) for i = 1–4,
and vi = (±c, ±c), for i = 5–8 [12] where c is the lattice
spacing. Recall that the D2Q9 lattice derives from the
three–point Gauss–Hermite formula [13], with the follow-
ing weights of the quadrature w(−1) = 1/6, w(0) = 2/3
and w(+1) = 1/6. Let us arrange in the list vx all the
components of the lattice velocities along the x–axis and
similarly in the list vy. Analogously let us arrange in the
list f all the populations fα. Algebraic operations for the
lists are always assumed component-wise. The sum of all

the elements of the list p is denoted by 〈p〉 =
∑Q−1

i=0 pi.
The dimensionless density ρ, the flow velocity u and the
second–order moment (pressure tensor) Π are defined by
ρ = 〈f〉, ρui = 〈vif〉 and ρΠij = 〈vi vjf〉 respectively.

On the lattice under consideration, the convex entropy
function (H–function) is defined as [5]

H(f) =
〈

f ln (f/W )
〉

, (1)

where W = w(vx)w(vy). The H–function minimiza-
tion problem is considered in the sequel. It is well
known [5] that the equilibrium population list fM is de-
fined as the solution of the minimization problem fM =
minf∈PM

H(f), where PM is the set of functions such
that PM =

{

f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu

}

. In other
words, minimization of the H–function (1) under the con-
straints of mass and momentum conservation yields [6]

fM = ρ
∏

α=x,y

w(vα) (2 − ϕ(uα/c))

(

2(uα/c) + ϕ(uα/c)

1 − (uα/c)

)vα/c

,

(2)

where ϕ(z) =
√

3z2 + 1. A remarkable feature of
the equilibrium (2) which it shares with the ordinary
Maxwellian is that it is a product of one-dimensional
equilibria. In order to ensure the positivity of fM , the
low Mach number limit must be considered, i.e. |uα| < c.

In this paper, we derive a novel constrained equilib-
rium, or quasi–equilibrium [14], by requiring, in addition,
that the diagonal components of the pressure tensor Π
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have some prescribed values. Hence let us introduce a
different minimization problem. The quasi–equilibrium
population list fG is defined as the solution of the mini-
mization problem fG = minf∈PG

H(f), where PG ⊂ PM

is the set of functions such that PG =
{

f > 0 : 〈f〉 =

ρ, 〈vf〉 = ρu, 〈v2
αf〉 = ρΠαα

}

. In other words, mini-
mization of the H–function (1) under the constraints of
mass and momentum conservation and prescribed diag-
onal components of the pressure tensor yields

fG = ρ
∏

α=x,y

w(vα)
3 (c2 − Παα)

2 c2

(

√

Παα + c uα

Παα − c uα

)vα/c(

2
√

Π2
αα − c2 u2

α

c2 − Παα

)v2

α
/c2

. (3)

To ease notation, we use Π = (Πxx, Πyy) for a generic
point on the two-dimensional plane of parameters. In
order to ensure the positivity of fG, it is required that
Π ∈ Ω where Ω = {Π : c |ux| < Πxx < c2, c |uy| < Πyy <
c2} is a convex rectangular in the plane of parameters for
each velocity u (see Fig. 1).

The generalized Maxwellian (3) is the central result of
this paper, and is the key to the derivations below. It
is interesting to note that, while the equilibrium (2) is
analogous to the ordinary Maxwellian (spherically sym-
metric Gaussian fM ∼ exp{−m(v−u)2/2kBΘ0}, shifted
from the origin by the amount of mean flow velocity u,
and with the width proportional to the fixed tempera-
ture Θ0 = c2/3), the quasi-equilibrium (3) resembles the
anisotropic Gaussian, fG ∼ exp{−(1/2)(v − u) · Π−1 ·
(v−u)}. The latter generalized Maxwellian corresponds
to the ellipsoidal symmetry, and is among the only few
analytic results on the relevant distribution functions in
the classical kinetic theory [15]. It is revealing that also in
the LB realm the analog of the generalized Maxwellian
has a nice closed form (3). The physical sense of (3)
is that it distinguishes the relaxation of the diagonal
components of the pressure tensor (and hence also of
the trace of this tensor) among other non-conserved mo-
ments, and hence one expects a control over the dynam-
ics of the trace which is responsible for the bulk viscosity
(see below). Moreover, it is possible to evaluate explic-
itly the H–function in the generalized Maxwell states (3),
HG = H

(

fG

)

, the result is elegantly written

HG = ρ lnρ+ ρ
∑

α=x, y

∑

k=−, 0, +

wk ak(Παα) ln
(

ak(Παα)
)

,

(4)
where w± = w(±1), w0 = w(0), a±(Παα) = 3 (Παα ±
c uα)/c2 and a0(Παα) = 3 (c2 − Παα)/(2 c2) (see Fig. 1).

Finally, with the help of fG (3), let us derive a con-
strained equilibrium fC which brings the H-function to
a minimum among all the population lists with a fixed
trace of the pressure tensor T (Π) = Πxx + Πyy. In
terms of the parameter set Ω, this is equivalent to re-
quire that the point C = (ΠC

xx, ΠC
yy) belongs to a line

segment LT =
{

Π ∈ Ω : Πxx + Πyy = T
}

, and
the constrained equilibrium C is that minimizing the

Π
xx

 / c2

Π
yy

 / 
c2
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FIG. 1: (Color online) Contour plot of the entropy HG (4)
at ρ = 1, ux = −0.2 and uy = 0.1 (c = 1). Rectangular
domain is the positivity domain Ω. M is the image of the
Maxwellian (2). O is the image of a generic non-equilibrium
state while C is the image of the constrained equilibrium (7)
(minimum of HG on the line LT ). C′ is the low Mach number
approximation of C, while the line segment connecting C′

and C′′ represents admissible generalized equilibria E(ω) (16)
with E(1) = C′ and E(ω∗) = C′′ at ω∗ = −1.

function HG (4) on LT (see Fig. 1). Since the re-
striction of a convex function to a line is also convex,
the solution to the latter problem exists and is found
by [(∂HG/∂Πxx) − (∂HG/∂Πyy)](Πxx,Πxx)∈LT

= 0, which

yields a cubic equation in terms of the normal stress dif-
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ference N = ΠC
xx − ΠC

yy,

N3 + a N2 + b N + d = 0,

a = −1

2
(u2

x − u2
y), b = (2 c2 − T ) (T − u2),

d = −1

2
(u2

x − u2
y) (2 c2 − T )2.

(5)

Let us define p = −a2/3 + b, q = 2 a3/27 − a b/3 + d
and ∆ = (q/2)2 + (p/3)3. As long as ∆ ≥ 0, which is
well satisfied in the low Mach number limit, the Cardano
formula implies

ΠC
xx =

T

2
+

1

2

(

r − p

3 r
− a

3

)

, r = 3

√

− q

2
+
√

∆, (6)

while ΠC
yy = T −ΠC

xx. Thus, substituting (6) into (3), we
find the constrained equilibrium

fC = fG(ρ, u, ΠC
xx(u, T ), ΠC

yy(u, T )). (7)

Before proceeding any further, we mention that the gen-
eralized Maxwellian (3) is consistent with and extends
the previously known results:
(i) The point of global minimum of the function HG

(4) on Ω is found from (∂HG/∂Παα) = 0. The cor-
responding solution M = (ΠM

xx, ΠM
xx), where ΠM

αα =

−c2/3 + (2c2/3)
√

1 + 3(uα/c)2, recovers the equilib-
rium fM (2) upon substitution into (3): fM =
fG(ρ, u, ΠM

xx(u), ΠM
yy(u)).

(ii) In Ref. [7], a different LB equilibrium fΘ was intro-
duced as the entropy minimization problem under fixed
density, momentum and energy. That equilibrium was
evaluated exactly only for vanishing velocity in [7] while
a series expansion was used for u 6= 0. The new result
reported above solves the problem of Ref. [7] exactly for
any velocity: Substituting T = 2Θ+u2 (two-dimensional
ideal gas equation of state, with Θ the temperature)
into (7), it is simply fΘ(ρ, u, Θ) = fG(ρ, u, ΠC

xx(u, 2Θ +
u2), ΠC

yy(u, 2Θ+ u2)). Expanding the exact solution ΠC
xx

(6) in terms of the velocity u yields the approximate so-
lution consistent with Ref. [7], namely

ΠC
xx = Θ +

(

Θ + 1

4Θ

)

u2
x +

(

3Θ − 1

4Θ

)

u2
y + O(u4). (8)

(iii) In Ref. [16], a so-called guided equilibrium f̃Θ was in-
troduced in order to derive LB method for compressible
flows. That equilibrium is recovered by simply assum-
ing the Maxwell-Boltzmann form of the diagonal com-
ponents, Πxx = Θ + u2

x and Πyy = Θ + u2
y, in (3):

f̃Θ(ρ, u, Θ) = fG(ρ, u, Θ + u2
x, Θ + u2

y).
Thus, the generalized Maxwellian (3) and its impli-

cation, the constrained equilibrium (7), unifies all the
equilibria introduced previously on the D2Q9 lattice.

Armed with the constrained equilibrium, we now pro-
ceed with the derivation of the kinetic equation. By
means of the usual equilibrium M and the newly found
constrained equilibrium C, let us define the generalized

equilibrium E(ω) =
(

ΠE
xx(ω), ΠE

yy(ω)
)

as a linear inter-
polation between the points M and C on the Π-plane

E(ω) = (1 − ω)M + ω C, (9)

where ω is a free parameter, and its admissible range will
be defined next. Thus, the generalized equilibrium list is
defined as

fGE(ω) = fG(ρ, u, ΠE
xx(ω), ΠE

yy(ω)). (10)

Considering kinetic equation of the form, ∂tf +v ·∂xf =
J(f), let us define the following collision operator

J(f) = λ
[

fGE (ω) − f
]

, (11)

where λ > 0 is a parameter, ruling the relaxation to-
ward the generalized equilibrium. In the continuum
limit, λ is related to the kinematic viscosity. While
Eq. (11) reminds the popular Bhatnagar-Gross-Krook
(BGK) model [17], the collision integral (11) depends
on two parameters, λ and ω. In view of the analogy
of fG with the anisotropic Gaussian, this is somewhat
similar to the so-called ellipsoidal statistical model [17].
However, in our case, the leading order of the macro-
scopic equations recovered in the continuum limit does
not depend on ω, which is a tunable parameter for en-
hancing the stability of the corresponding LB scheme.
Collision operator (11) conserves mass and momentum,
i.e. 〈J(f)〉 = 0 and 〈vJ(f)〉 = 0. Note that, at ω = 0,
(11) reduces to the BGK LB model of Ref. [5], while at
ω = 1 it becomes the so-called consistent LB model with
energy conservation [7] (see Remark (ii) above).

The key for proving the H-theorem for the kinetic
equation is to establish the non-positivity of the entropy
production σ due to the relaxation term (11), where

σ =
〈

ln (f/W )J(f)
〉

. (12)

Clearly, if f = fM , then C = M and ΠE(ω) = ΠM for
any ω. From Remark (i), it follows that entropy produc-
tion annihilates at the equilibrium, σ(fM ) = 0. In the
general case, we have

σ

λ
≤ HGE (ω) − H(f) ≤ HGE (ω) − HG(Π), (13)

where HGE(ω) = HG

(

ΠE
xx(ω), ΠE

yy(ω)
)

. The first in-
equality is due to the convexity of the H-function, while
the second holds because fG(Πxx, Πyy), by definition,
minimizes H among all the population lists with the
moments (Πxx, Πyy). Recalling that Π(fGE (1)) and
Π(fG(Πxx, Πyy)) have the same trace and taking into
account the definition of the point C, inequality (13) can
be rewritten

σ

λ
≤ HGE (ω) − HGE (1) + HGE (1) − HG(Π)

≤ HGE (ω) − HGE (1).
(14)

What remains is to estimate the range of ω such that
HGE (ω) ≤ HGE(1). Clearly, since M = E(0) is the ab-
solute minimum of HG, and because HGE (ω) is a convex
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function (a restriction of a convex function to a line), the
right hand side of Eq. (14) is non-positive if 0 ≤ ω < 1.
This proves non-positivity of the entropy production in
the interval 0 ≤ ω < 1. In order to extend the proof to
ω < 0, let us consider the entropy estimate [5] (see also
[18]):

HGE (ω∗) = HGE (1). (15)

Thanks to the convexity of HGE (ω), the non-trivial so-
lution ω∗ < 0 to this equation is unique when it exists.
In the opposite case, we take ω∗ < 0 from the condition,
E(ω∗) ∈ ∂ Ω, where ∂ Ω is the boundary of the positiv-
ity domain Ω. In both cases, for ω∗ ≤ ω ≤ 0, it holds
HGE (ω) ≤ HGE (1). Thus, if ω takes values in the inter-
val ω∗ ≤ ω < 1, the entropy production is non-positive,
σ ≤ 0, which proves the existence of the H–theorem for
the proposed model. Note that, from the entropy esti-
mate, it follows that ω∗, in general, depends on the state
f . However, Eq. (15) drastically simplifies at low Mach
numbers which we consider next.

In the case of diffusion scaling [19, 20], i.e. the flow
regime with Kn ∼ Ma ∼ u/c ≪ 1, where Kn is the
Knudsen number and Ma is the Mach number, equation
(8) simplifies to ΠC

xx = (T/2) + (ΠM
xx − ΠM

yy)/2 + O(u4)

and similar to ΠC
yy. Introducing these results in Eqs.

(9) allows one to recast the definition of the generalized
equilibrium, namely

ΠE
αα(ω) = ΠM

αα + ω
T − TM

2
+ O(u4). (16)

Using (16) in the definition of the collision operator (11)
and neglecting all the terms in the higher moments which
are two order of magnitude (with regards to u) smaller
than the corresponding terms required to recover incom-
pressible Navier–Stokes equations [20], the collision op-
erator can be simplified to

J ′(f) = A
(

fM − f
)

, (17)

where A = λB−1Λ B and 9 × 9 matrices B and Λ are

Λ = diag

(

[0, 0, 0],

[

r+ r−
r− r+

]

, [1, 1, 1, 1]

)

,

B =
[

1, vx, vy, v2
x, v2

y, vxvy, v2
xvy, vxv2

y, v2
xv2

y

]T
,

(18)

with r± = (r±1)/2 and r = 1−ω. Operator J ′ is a MRT
collisional operator with collision matrix A (characterized
by two relaxation frequencies λ and δ = rλ). It is possible
to prove by means of the asymptotic analysis [21] that,
in the continuum limit, J ′ leads to the kinematic (shear)
viscosity and the second (bulk) viscosity coefficients given
respectively by

ν =
c2

3λ
, ξ =

c2

3δ
. (19)

Finally, for low Mach numbers, the entropy HGE can
be estimated as follows:

HGE = ρ ln ρ +
3

2
ρ u2 +

9

8
ρ (T − TM )2ω2 + O(u6). (20)

Using (20) in the entropy condition (15), we find ω∗ ≈
−1 (see Fig. 1). Consequently, the stability region of
the relaxation frequency δ controlling the bulk viscosity
is estimated 0 < δ < 2λ or, taking into account Eq.
(19), equivalently 0 < ν/ξ < 2. In particular, for high
Reynolds number flows, the ratio ν/ξ tends to the lowest
limit, i.e. large bulk viscosity is required to make more
stable the numerical computations.

Since the bulk viscosity controls the attenuation of
acoustic waves, which are fictitious when searching for
the incompressible limit, increasing this tunable param-
eter allows one to mitigate the effects of fictitious com-
pressibility and hence it increases the stability region of
the scheme. In order to check the accuracy of the scheme,
let us consider the Taylor-Green vortex flow test. Let us
consider a square domain (x, y) ∈ [0, 2π/k] × [0, 2π/k].
The Taylor-Green vortex flow has the following analyti-
cal solution [22]:

ux = −u0 cos (kx) sin (ky) exp
(

−2νk2t
)

, (21)

uy = u0 cos (ky) sin (kx) exp
(

−2νk2t
)

, (22)

p = −u2
0

4
[cos (2kx) + cos (2ky)] exp

(

−4νk2t
)

. (23)

where the pressure p = (c2ρ)/(3 ρ0). It is immediate to
prove that

Φ(t) =
1

2

∫ 2π/k

0

∫ 2π/k

0

(u2
x+u2

y)k
2dxdy =

u2
0

4
exp (−4νk2t).

(24)
The previous formula suggests a simple way to measure
the actual kinematic viscosity. Introducing the simula-
tion time t ∈ [0, t0], the measured kinematic viscosity is
given by

ν∗ = − ln (4Φ(t0)/u2
0)

4k2t0
. (25)

In the following numerical results, we set k = 1, u0 = 1,
ρ0 = 1 and t0 = 5. Consequently the Reynolds number
becomes Re = 2π/ν. Let us consider a homogeneous
mesh made of 160 × 160 nodes, which implies Knudsen
number Kn = 1/160. Let us select the Mach number
as Ma = 1/16. Some numerical tests are reported for
different kinematic viscosity ν and bulk viscosity ξ. The
numerical results are reported in Table I and compared
with the standard lattice BGK (LBGK) model. First
of all, this test shows that the model recovers the right
kinematic viscosity. Moreover, the relaxation frequency
δ, controlling the bulk viscosity, does not affect the lead-
ing part of the solution. According to the previous test,
even large bulk viscosities may be adopted without af-
fecting significantly the numerical results.

To conclude, the generalized Maxwellian (3) opens a
new perspective on the LB method. Various LB equilib-
ria introduced in the past are special cases of (3). Impor-
tant application of (3), considered in this paper, is a novel
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TABLE I: Taylor-Green vortex flow test. Some numerical
tests are reported for different kinematic viscosity ν and bulk
viscosity ξ. The mesh is made of 160×160 nodes. The Knud-
sen number is Kn = 1/160, the Mach number Ma = 1/16 and
finally the Reynolds number Re = 2π/ν. The actual kine-
matic viscosity ν∗ is measured by means of Eq. (25) and the
relative error (ν − ν∗)/ν is reported as well.

ν/ξ ν Measured ν∗ Error [%]

LBGK 1 0.001 0.00102065 2.0648
present 0.1 0.001 0.00102071 2.0713
present 0.01 0.001 0.00102106 2.1058
LBGK 1 0.010 0.00998509 -0.1491
present 0.1 0.010 0.00998555 -0.1445
present 0.01 0.010 0.00998654 -0.1346
LBGK 1 0.100 0.09977323 -0.2268
present 0.1 0.100 0.09977355 -0.2264
present 0.01 0.100 0.09977230 -0.2277

class of entropic multiple–relaxation–time (E–MRT) LB
models. They enjoy both the H–theorem and the ad-
ditional free–tunable parameter for controlling the bulk
viscosity. Hence, they combine the two most successful
strategies for enhancing stability of LB for high Reynolds
number simulations. Because all the results above are
derived in a closed form, numerical implementation of
the E–MRT LB models is straightforward. Preliminary
numerical results demonstrated that efficient stabiliza-
tion of the LB simulation without loss of accuracy is
indeed achieved with the suggested scheme. Moreover,
the implementation is not much different from the fa-
miliar LBGK scheme, unlike the standard MRT model.
These results show that the present model can be used for
enhancing stability instead of the most popular LBGK
method. Details of the implementation and numerical
results will be reported in a separate publication. I.V.K.
acknowledges support of CCEM-CH.
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