Recent advances in random matrix theory have spurred the adoption of eigenvalue-based detection techniques for cooperative spectrum sensing in cognitive radio. These techniques use the ratio between the largest and the smallest eigenvalues of the received signal covariance matrix to infer the presence or absence of the primary signal. The results derived so far are based on asymptotical assumptions, due to the difficulties in characterizing the exact eigenvalues ratio distribution. By exploiting a recent result on the limiting distribution of the smallest eigenvalue in complex Wishart matrices, in this paper we derive an expression for the limiting eigenvalue ratio distribution, which turns out to be much more accurate than the previous approximations also in the non-asymptotical region. This result is then applied to calculate the decision sensing threshold as a function of a target probability of false alarm. Numerical simulations show that the proposed detection rule provides a substantial improvement compared to the other eigenvalue-based algorithms.

Cooperative Spectrum Sensing based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices / Penna, Federico; Garello, Roberto; Spirito, M. A.. - In: IEEE COMMUNICATIONS LETTERS. - ISSN 1089-7798. - STAMPA. - 13:11(2009), pp. 507-509. [10.1109/LCOMM.2009.090425]

Cooperative Spectrum Sensing based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices

PENNA, FEDERICO;GARELLO, Roberto;
2009

Abstract

Recent advances in random matrix theory have spurred the adoption of eigenvalue-based detection techniques for cooperative spectrum sensing in cognitive radio. These techniques use the ratio between the largest and the smallest eigenvalues of the received signal covariance matrix to infer the presence or absence of the primary signal. The results derived so far are based on asymptotical assumptions, due to the difficulties in characterizing the exact eigenvalues ratio distribution. By exploiting a recent result on the limiting distribution of the smallest eigenvalue in complex Wishart matrices, in this paper we derive an expression for the limiting eigenvalue ratio distribution, which turns out to be much more accurate than the previous approximations also in the non-asymptotical region. This result is then applied to calculate the decision sensing threshold as a function of a target probability of false alarm. Numerical simulations show that the proposed detection rule provides a substantial improvement compared to the other eigenvalue-based algorithms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2280125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo