Cell migration involves different mechanisms in different cell types and tissue environments. Changes in migratory behaviour have been observed experimentally and associated with phenotypic switching in various situations, such as the migration–proliferation dichotomy of glioma cells, the epithelial– mesenchymal transition or the mesenchymal–amoeboid transition of fibrosarcoma cells in the extracellular matrix (ECM). In the present study, we develop a modelling framework to account for changes in migratory behaviour associated with phenotypic switching. We take into account the influence of the ECM on cell motion and more particularly the alignment process along the fibers. We use a mesoscopic description to model two cell populations with different migratory properties. We derive the corresponding continuum (macroscopic) model by appropriate rescaling, which leads to a generic reaction–diffusion system for the two cell phenotypes. We investigate phenotypic adaptation to dense and sparse environments and propose two complementary transition mechanisms. We study these mechanisms by using a combination of linear stability analysis and numerical simulations. Our investigations reveal that when the cell migratory ability is reduced by a crowded environment, a diffusive instability may appear and lead to the formation of aggregates of cells of the same phenotype. Finally, we discuss the importance of the results from a biological perspective.

A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism / Chauviere, A; Byrne, H. M.; Preziosi, Luigi. - In: MATHEMATICAL MEDICINE AND BIOLOGY. - ISSN 1477-8599. - 27:(2010), pp. 255-281. [10.1093/imammb/dqp021]

A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism

PREZIOSI, LUIGI
2010

Abstract

Cell migration involves different mechanisms in different cell types and tissue environments. Changes in migratory behaviour have been observed experimentally and associated with phenotypic switching in various situations, such as the migration–proliferation dichotomy of glioma cells, the epithelial– mesenchymal transition or the mesenchymal–amoeboid transition of fibrosarcoma cells in the extracellular matrix (ECM). In the present study, we develop a modelling framework to account for changes in migratory behaviour associated with phenotypic switching. We take into account the influence of the ECM on cell motion and more particularly the alignment process along the fibers. We use a mesoscopic description to model two cell populations with different migratory properties. We derive the corresponding continuum (macroscopic) model by appropriate rescaling, which leads to a generic reaction–diffusion system for the two cell phenotypes. We investigate phenotypic adaptation to dense and sparse environments and propose two complementary transition mechanisms. We study these mechanisms by using a combination of linear stability analysis and numerical simulations. Our investigations reveal that when the cell migratory ability is reduced by a crowded environment, a diffusive instability may appear and lead to the formation of aggregates of cells of the same phenotype. Finally, we discuss the importance of the results from a biological perspective.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2284325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo