The complexity of cell phones is continually increasing, with regards to both hardware and software parts. As many complex devices, their components are usually designed and verified separately by specialized teams of engineers and programmers. However, even if each isolated part is working flawlessly, it often happens that bugs in one software application arise due to the interaction with other modules. Those software misbehaviors become particularly critical when they affect the residual battery life, causing power dissipation. An automatic approach to detect power-affecting software defects is proposed. The approach is intended to be part of a qualifying verification plan and complete human expertise. Motorola, always at the forefront of researching innovations in the product development chain, experimented the approach on a mobile phone prototype during a partnership with Politecnico di Torino. Software errors unrevealed by all human-designed tests have been detected by the proposed framework, two out of three critical from the power consumption point of view, thus enabling Motorola to further improve its verification plans. Details of the tests and experimental results are presented.

A Framework for Automated Detection of Power-Related Software Errors in Industrial Verification Processes / Gandini, S.; Ruzzarin, W.; SANCHEZ SANCHEZ, EDGAR ERNESTO; Squillero, Giovanni; Tonda, ALBERTO PAOLO. - In: JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-8174. - STAMPA. - 26:(2010), pp. 689-697. [10.1007/s10836-010-5184-5]

A Framework for Automated Detection of Power-Related Software Errors in Industrial Verification Processes

SANCHEZ SANCHEZ, EDGAR ERNESTO;SQUILLERO, Giovanni;TONDA, ALBERTO PAOLO
2010

Abstract

The complexity of cell phones is continually increasing, with regards to both hardware and software parts. As many complex devices, their components are usually designed and verified separately by specialized teams of engineers and programmers. However, even if each isolated part is working flawlessly, it often happens that bugs in one software application arise due to the interaction with other modules. Those software misbehaviors become particularly critical when they affect the residual battery life, causing power dissipation. An automatic approach to detect power-affecting software defects is proposed. The approach is intended to be part of a qualifying verification plan and complete human expertise. Motorola, always at the forefront of researching innovations in the product development chain, experimented the approach on a mobile phone prototype during a partnership with Politecnico di Torino. Software errors unrevealed by all human-designed tests have been detected by the proposed framework, two out of three critical from the power consumption point of view, thus enabling Motorola to further improve its verification plans. Details of the tests and experimental results are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2380102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo