Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting

Original Citation:

Availability:
This version is available at: http://porto.polito.it/2380847/ since: January 2011

Publisher:
World Scientific Publishing

Published version:
DOI:10.1142/S0219199710003890

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved"), as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

(Article begins on next page)
Nontrivial Solutions of p-Superlinear p-Laplacian Problems via a Cohomological Local Splitting

Marco Degiovanni
Dipartimento di Matematica e Fisica
Università Cattolica del Sacro Cuore
Via dei Musei 41, 25121 Brescia, Italy
m.degiovanni@dmf.unicatt.it

Sergio Lancelotti
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
sergio.lancelotti@polito.it

Kanishka Perera
Department of Mathematical Sciences
Florida Institute of Technology
150 West University Blvd, Melbourne, FL 32901, USA
kperera@fit.edu

Author’s version
Published in: Communications in Contemporary Mathematics 12 (2010), 475-486
Doi: 10.1142/S0219199710003890
Abstract

We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.

Keywords: p-Laplace equations; nontrivial solutions; Morse theory.

Mathematics Subject Classification 2010: 58E05, 35J65

1 Introduction

Consider the boundary value problem

\[
\begin{aligned}
-\Delta_p u &= \lambda V |u|^{p-2} u + g(x, u) \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

(1.1)

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \), \(n \geq 1 \), \(\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u) \) is the p-Laplacian of \(u \), \(p \in]1, \infty[\), \(\lambda \in \mathbb{R} \) is a parameter, \(V \in L^\infty(\Omega) \) and \(g \) is a Carathéodory function on \(\Omega \times \mathbb{R} \) satisfying the following conditions:

\((g1)\) there exist \(C > 0 \) and

\[
p < q < \begin{cases} p^* := \frac{np}{n-p} & \text{if } p < n \\ \infty & \text{if } p \geq n \end{cases}
\]

such that

\[|g(x, s)| \leq C (|s|^{q-1} + 1) ; \]

\((g2)\) we have

\[g(x, s) = o(|s|^{p-1}) \text{ as } s \to 0, \text{ uniformly in } x; \]
(g3) there exist $\mu > p$ and $R > 0$ such that

$$0 < \mu G(x, s) := \int_0^s g(x, t) \, dt \leq s \, g(x, s), \quad \text{whenever } |s| \geq R.$$

In particular, $g(x, 0) \equiv 0$ and hence we have the trivial solution $u = 0$, and we seek another.

In the case $p = 2$, the existence of a nontrivial solution u for (1.1) can be obtained via the Linking Theorem (see e.g. Rabinowitz [21, Theorem 5.16]). More precisely, let us assume, without loss of generality, that $\lambda \geq 0$. If the set

$$\mathcal{M} = \left\{ u \in W_0^{1,p}(\Omega) : \int_{\Omega} V |u|^p \, dx = 1 \right\}$$

is empty or if $\mathcal{M} \neq \emptyset$ and

$$\lambda < \lambda_1 := \min \left\{ \int_{\Omega} |\nabla u|^p \, dx : \ u \in \mathcal{M} \right\},$$

then the existence of a nontrivial solution can be proved, without any further assumption, by the Mountain Pass Theorem for any $p > 1$ (see Ambrosetti and Rabinowitz [1] for the case $p = 2$ and Dinca, Jebelean and Mawhin [10] for the case $p \neq 2$). On the contrary, if $\mathcal{M} \neq \emptyset$ and $\lambda \geq \lambda_1$, the classical proof is based on the fact that each eigenvalue λ_k of $-\Delta_2$ induces a suitable direct sum decomposition of $W_0^{1,2}(\Omega)$. On the other hand, if $p \neq 2$, such decompositions are not available. Nevertheless, a linking argument over cones, rather than over linear subspaces, has been developed for $p \neq 2$, when λ is close to λ_1 by Fan and Z. Li [12] and for any λ by Degiovanni and Lancelotti [9]. In such a way, the mentioned result of Rabinowitz has been completely extended to the case $p \neq 2$.

When $\lambda \geq \lambda_1$, in all these results a global sign condition like $G(x, s) \geq 0$ needs to be imposed, in order to recognize the linking geometry. However, such an assumption can be relaxed by means of Morse theory or nonstandard linking constructions.

When $p = 2$, in Benci [2, Theorem 7.14] it is show that, if a nonresonance condition at the origin is satisfied, the existence of a nontrivial solution can be obtained without any further assumption. On the other hand, S.J. Li and Willem [15, Theorem 4] are able to treat the resonant case under a local sign condition on G. Related results are also contained in J.Q. Liu and S.J. Li [14].
The approach based on Morse theory has been extended to the case \(p \neq 2 \) by S. Liu [16] when \(\lambda \) is close to \(\lambda_1 \) and by Perera [19] when \(\lambda \) does not belong to the spectrum of the \(p \)-Laplace operator.

Our purpose is to develop this approach, in order to remove any condition on \(\lambda \) and require only a local sign condition on \(G \). Our result is the following

Theorem 1.1. Let us suppose that assumptions \((g1)-(g3)\) hold and let \(V \in L^\infty(\Omega) \). Then, for every \(\lambda \in \mathbb{R} \), problem (1.1) has a nontrivial solution \(u \in W^{1,p}_0(\Omega) \) in each of the following cases:

(a) there exists \(\delta > 0 \) such that \(G(x,s) \geq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \);

(b) there exists \(\delta > 0 \) such that \(G(x,s) \leq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \).

This is a natural extension to the case \(p \neq 2 \) of the mentioned result of S.J. Li and Willem, although the argument is based there on a nonstandard linking construction and here on Morse theory.

In the next section we recall and prove some preliminary facts, while in section 3 we prove the main result in a more general setting. In the last section we recover Theorem 1.1 as a particular case.

2 Preliminaries

Let \(\Phi \) be a \(C^1 \)-functional defined on a real Banach space \(W \). We denote by \(B_\rho \) and \(S_\rho \) the closed ball and sphere of center 0 and radius \(\rho \). We also denote by \(H \) the Alexander-Spanier cohomology with \(\mathbb{Z}_2 \)-coefficients (see Spanier [22]). For a symmetric subset \(X \) of \(W \setminus \{0\} \), \(i(X) \) denotes its \(\mathbb{Z}_2 \)-cohomological index (see Fadell and Rabinowitz [11]). The following notion has been introduced, in a slightly different form, by Perera, Agarwal, and O’Regan [20] and is in turn a variant of the homological local linking of Perera [18]. It should also be compared with the local linking of S.J. Li and Willem [15].

Definition 2.1. We say that \(\Phi \) has a cohomological local splitting near 0 in dimension \(k < \infty \), if there are two symmetric cones \(W_-, W_+ \) in \(W \) and \(\rho > 0 \) such that

\[
W_- \cap W_+ = \{0\} , \quad i(W_- \setminus \{0\}) = i(W \setminus W_+) = k
\]

(2.1)
and
\[
\begin{aligned}
\Phi(u) &\leq \Phi(0) \quad \text{for every } u \in B_\rho \cap W_-, \\
\Phi(u) &\geq \Phi(0) \quad \text{for every } u \in B_\rho \cap W_+.
\end{aligned}
\tag{2.2}
\]

As we will see, in such a case 0 must be a critical point of \(\Phi \).

Recall that the cohomological critical groups of \(\Phi \) at a point \(u \in W \) are defined by
\[
C^q(\Phi, u) = H^q(\Phi^c, \Phi^c \setminus \{u\}), \quad q \geq 0,
\]
where \(c = \Phi(u) \) is the corresponding value and \(\Phi^c \) is the closed sublevel set \(\{w \in W : \Phi(w) \leq c\} \) (see, e.g., Chang [3] or Mawhin and Willem [17]). By the excision property, we have
\[
C^q(\Phi, u) \approx H^q(\Phi^c \cap U, \Phi^c \cap U \setminus \{u\})
\]
for every neighborhood \(U \) of \(u \). Therefore, the concept has local nature.

Moreover, it is well known that all critical groups are trivial, if \(u \) is not a critical point of \(\Phi \) (see e.g. Corvellec [5, Proposition 3.4]). Finally, the next result shows a stability property and is a particular case of Corvellec and Hantoute [7, Theorem 5.2] (see also Benci [2, Theorem 5.16]). The case in which \(W \) is a Hilbert space and \(\Phi \) is of class \(C^2 \) can be also found in Chang [3, Theorem I.5.6] and in Mawhin and Willem [17, Theorem 8.8].

Theorem 2.2. Let \(\Phi_t : W \rightarrow \mathbb{R}, \ t \in [0,1], \) be a family of functionals of class \(C^1 \). Assume that there exists \(\rho > 0 \) such that each \(\Phi_t \) satisfies the Palais-Smale condition over \(B_\rho \) and has no critical point in \(B_\rho \) other than \(0 \). Suppose also that the map \(\{t \mapsto \Phi_t\} \) is continuous from \([0,1]\) into \(C^1(B_\rho) \).

Then \(C^q(\Phi_t, 0) \) is independent of \(t \).

The cohomological local splitting allows to give an estimate of the critical groups, also in the absence of a direct sum decomposition.

Proposition 2.3. If \(\Phi \) has a cohomological local splitting near \(0 \) in dimension \(k \), then \(0 \) is a critical point of \(\Phi \). Moreover, if \(0 \) is an isolated critical point of \(\Phi \), then we have \(C^k(\Phi, 0) \neq 0 \).
This proposition is a variant of a result of Perera, Agarwal, and O’Regan [20]. We need the following lemma from Degiovanni and Lancelotti (see [9, Theorem 2.7] and also Cingolani and Degiovanni [4, Theorem 3.6]), which establishes a connection between equivariant index and nonequivariant cohomology.

Lemma 2.4. If X is a symmetric subset of $W \setminus \{0\}$ with $k = i(X) < \infty$ and A is a symmetric subset of X with $i(A) = k$, then the homomorphism $i^* : H^k(W, X) \to H^k(W, A)$, induced by the inclusion $i : (W, A) \subseteq (W, X)$, is nontrivial.

Proof of Proposition 2.3. It is enough to prove that, if 0 does not accumulate critical points of Φ, then $C_k(\Phi; 0) \neq 0$. Therefore assume, without loss of generality, that Φ has no critical point u with $0 < \|u\| \leq \rho$. Let $c = \Phi(0)$.

There exists a deformation $\eta : W \times [0, 1] \to W$ such that

\[
\Phi(\eta(u, t)) < \Phi(u) \quad \text{if } \Phi'(u) \neq 0 \text{ and } t > 0,
\]

\[
\eta(u, t) = u \quad \text{otherwise},
\]

(see e.g. Benci [2, Theorem 5.5] or Corvellec [6]). Let $0 < r \leq \rho$ be such that $\eta(B_r \times [0, r]) \subseteq B_{r'}$. Since $B_r \cap W_-$ is contractible and $S_r \cap W_-$ is a deformation retract of $W_- \setminus \{0\}$, from Lemma 2.4 and (2.1) we deduce that the homomorphism

\[
i^* : H^k(W, B_r \setminus W_+) \to H^k(B_r \cap W_-, S_r \cap W_-),
\]

induced by the inclusion $i : (B_r \cap W_-, S_r \cap W_-) \subseteq (W, B_r \setminus W_+)$, is nontrivial. On the other hand, since (2.2) implies

\[
B_r \cap W_- \subseteq \Phi^c \cap B_r, \quad S_r \cap W_- \subseteq \Phi^c \cap B_r \setminus \{0\}, \quad \eta(\Phi^c \cap B_r \setminus \{0\}, r) \subseteq B_{r'} \setminus W_+,
\]

we may also consider the composition

\[
H^k(W, B_{r'} \setminus W_+) \xrightarrow{\eta(\cdot, r)^*} H^k(\Phi^c \cap B_r, \Phi^c \cap B_r \setminus \{0\}) \xrightarrow{j^*} H^k(B_r \cap W_-, S_r \cap W_-)
\]

where $j : (B_r \cap W_-, S_r \cap W_-) \subseteq (\Phi^c \cap B_r, \Phi^c \cap B_r \setminus \{0\})$ is the inclusion. Again (2.2) yields

\[
\eta((S_r \cap W_-) \times [0, r]) \subseteq B_{r'} \setminus W_+,
\]

so that $\eta(\cdot, r) \circ j$ is homotopic to i. Therefore $j^* \circ \eta(\cdot, r)^* = i^*$ is nontrivial, which in turn implies that $H^k(\Phi^c \cap B_r, \Phi^c \cap B_r \setminus \{0\}) \neq 0$. \qed
Now, let us recall a situation in which one can build two symmetric cones satisfying (2.1). Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^n \), let \(1 < p < \infty \) and let

\[
\mathcal{V}(\Omega) := \left\{ \begin{array}{ll}
L^r(\Omega) & \text{if } p \leq n, \\
L^1(\Omega) & \text{if } p > n.
\end{array} \right.
\]

Take \(V \in \mathcal{V}(\Omega) \) and consider the eigenvalue problem

\[
\begin{cases}
-\Delta_p u = \lambda V |u|^{p-2} u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\tag{2.3}
\]

We refer the reader to Cuesta [8] and Szulkin and Willem [23] for general properties concerning (2.3).

Now, assume that \(\{ x \in \Omega : V(x) > 0 \} \) has positive measure, denote by \(\mathcal{F} \) the class of symmetric subsets of

\[
\mathcal{M} = \left\{ u \in W^{1,p}_0(\Omega) : \int_{\Omega} V |u|^p \, dx = 1 \right\}
\]

and set

\[
\lambda_k = \inf_{M \in \mathcal{F}} \sup_{u \in M, i(M) \geq k} \int_{\Omega} |\nabla u|^p \, dx, \quad k \geq 1.
\tag{2.4}
\]

Then \(\lambda_k \nearrow +\infty \) are eigenvalues of (2.3) and the following result holds (see Degiovanni and Lancelotti [9, Theorem 3.2]).

Proposition 2.5. Let \(k \geq 1 \) be such that \(\lambda_k < \lambda_{k+1} \) and let

\[
W_- = \left\{ u \in W^{1,p}_0(\Omega) : \int_{\Omega} |\nabla u|^p \, dx \leq \lambda_k \int_{\Omega} V |u|^p \, dx \right\},
\]

\[
W_+ = \left\{ u \in W^{1,p}_0(\Omega) : \int_{\Omega} |\nabla u|^p \, dx \geq \lambda_{k+1} \int_{\Omega} V |u|^p \, dx \right\}.
\]

Then \(W_- \) and \(W_+ \) are two symmetric cones in \(W^{1,p}_0(\Omega) \) satisfying (2.1).
3 The main result

Let Ω be a bounded open subset of \mathbb{R}^n, let $1 < p < \infty$, let $V \in \mathcal{V}(\Omega)$ and let $g : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying the following assumptions:

$(g1')$ we have that

for every $\varepsilon > 0$ there exists $a_\varepsilon \in \mathcal{V}(\Omega)$ such that

$$|g(x, s)| \leq a_\varepsilon(x) |s|^{p-1} + \varepsilon |s|^{p^*-1},$$

if $p < n$;

there exist $a \in \mathcal{V}(\Omega)$, $C > 0$ and $q > p$ such that

$$|g(x, s)| \leq a(x) |s|^{p-1} + C |s|^{q-1},$$

if $p = n$;

for every $S > 0$ there exists $a_S \in \mathcal{V}(\Omega)$ such that

$$|g(x, s)| \leq a_S(x) |s|^{p-1}$$

whenever $|s| \leq S$, if $p > n$;

$(g2')$ for a.e. $x \in \Omega$, we have $\lim_{s \rightarrow 0} \frac{G(x, s)}{|s|^p} = 0$ and $\lim_{|s| \rightarrow \infty} \frac{G(x, s)}{|s|^p} = +\infty$, where

$$G(x, s) = \int_0^s g(x, t) \, dt;$$

$(g3')$ there exist $\mu > p$, $\gamma_0 \in L^1(\Omega)$ and $\gamma_1 \in \mathcal{V}(\Omega)$ such that

$$-\gamma_0(x) - \gamma_1(x) |s|^p \leq \mu G(x, s) \leq s g(x, s) + \gamma_0(x) + \gamma_1(x) |s|^p$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$.

In order to study the quasilinear problem

$$\begin{cases}
-\Delta_p u = \lambda V |u|^{p-2} u + g(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases} \tag{3.1}$$

let us define a functional $\Phi : W^{1,p}_0(\Omega) \rightarrow \mathbb{R}$ of class C^1 by

$$\Phi(u) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx - \frac{\lambda}{p} \int_\Omega V |u|^p \, dx - \int_\Omega G(x, u) \, dx$$

and set $\|u\| = (\int_\Omega |\nabla u|^p \, dx)^{1/p}$ for every $u \in W^{1,p}_0(\Omega)$. Recall also that, for every $\gamma \in \mathcal{V}(\Omega)$, the map $\{u \mapsto \gamma |u|^p\}$ is weak-to-strong sequentially continuous from $W^{1,p}_0(\Omega)$ into $L^1(\Omega)$.

8
Lemma 3.1. The following facts hold:

(a) for every \(c \in \mathbb{R} \), we have
\[
\limsup_{\|u\| \to \infty \atop \Phi(u) \leq c} \frac{\Phi'(u)u - p \Phi(u)}{\|u\|^p} < 0;
\]

(b) for every \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \), we have
\[
\lim_{|t| \to \infty} \frac{\Phi(tu)}{|t|^p} = -\infty.
\]

Proof. (a) Let \(c \in \mathbb{R} \). By contradiction, let \(d_k \to 0 \) and let \((u_k)\) be a sequence in \(\Phi^c \) such that \(\|u_k\| \to \infty \) and
\[
\Phi'(u_k)u_k - p \Phi(u_k) \geq -d_k \|u_k\|^p \quad \text{for every } k \in \mathbb{N}.
\]
If we set \(v_k = u_k/\|u_k\| \), up to a subsequence \((v_k)\) is convergent to some \(v \in W_0^{1,p}(\Omega) \) weakly and a.e. in \(\Omega \).

From \((g3')\) it follows that
\[
-d_k \|u_k\|^p \leq \Phi'(u_k)u_k - p \Phi(u_k) = \int_\Omega (pG(x, u_k) - u_k g(x, u_k)) \, dx
\]
\[
= \int_\Omega (\mu G(x, u_k) - u_k g(x, u_k)) \, dx - (\mu - p) \int_\Omega G(x, u_k) \, dx
\]
\[
\leq \int_\Omega (\gamma_0 + \gamma_1 |u_k|^p) \, dx - (\mu - p) \int_\Omega G(x, u_k) \, dx,
\]
whence
\[
(\mu - p) \int_\Omega G(x, u_k) \, dx \leq d_k \|u_k\|^p + \int_\Omega (\gamma_0 + \gamma_1 |u_k|^p) \, dx.
\]
(3.2)

Therefore we have
\[
\limsup_k \frac{\int_\Omega G(x, u_k) \, dx}{\|u_k\|^p} < +\infty.
\]
(3.3)

On the other hand, \((g3')\) also yields
\[
\frac{G(x, u_k)}{\|u_k\|^p} + \frac{\gamma_0}{\|u_k\|^p} \geq -\gamma_1 |v_k|^p,
\]
hence, by the (generalized) Fatou lemma and (3.3),
\[
\int_{\Omega} \left(\liminf_{k} \frac{G(x, u_k)}{\|u_k\|^p} \right) dx \leq \liminf_{k} \frac{\int_{\Omega} G(x, u_k) dx}{\|u_k\|^p} < +\infty.
\]
Since by \((g2')\) we have
\[
\lim_{k} \frac{G(x, u_k)}{\|u_k\|^p} = \lim_{k} \left(\frac{G(x, u_k)}{|u_k|^p} - \frac{v_k}{p} \right) = +\infty \quad \text{where } v \neq 0,
\]
we deduce that \(v = 0\) a.e. in \(\Omega\).

Formula (3.2) can also be rewritten as
\[
\left(\frac{\mu}{p} - 1 \right) \int_{\Omega} |\nabla u_k|^p dx \leq (\mu - p)\Phi(u_k) + d_k\|u_k\|^p + \int_{\Omega} \gamma_0 dx + \int_{\Omega} \left[\left(\frac{\mu}{p} - 1 \right) V + \gamma_1 \right] |u_k|^p dx,
\]
namely
\[
\left(\frac{\mu}{p} - 1 \right) \leq d_k + (\mu - p)\frac{\Phi(u_k)}{\|u_k\|^p} + \int_{\Omega} \gamma_0 dx + \int_{\Omega} \left[\left(\frac{\mu}{p} - 1 \right) V + \gamma_1 \right] |v_k|^p dx.
\]

Going to the limit as \(k \to \infty\), we get \(\frac{\mu}{p} - 1 \leq 0\) and a contradiction follows.

(b) Since by \((g3')\)
\[
\frac{G(x, tu)}{|t|^p} + \frac{\gamma_0}{|t|^p} \geq -\gamma_1 |t|^p,
\]
applying as before Fatou's lemma, the assertion follows.

\[\square\]

Lemma 3.2. There exists \(a < 0\) such that \(\Phi^a\) is contractible in itself.

Proof. By (a) of Lemma 3.1, there exists \(b \in \mathbb{R}\) such that
\[
\Phi'(u)u - p\Phi(u) \leq b \quad \text{for every } u \in \Phi^0.
\]

In particular, there exists \(a < 0\) such that
\[
\Phi'(u)u < 0 \quad \text{for every } u \in \Phi^a. \quad (3.4)
\]
If we set, taking into account \(b \) of Lemma 3.1,
\[
t(u) = \min \{ t \geq 1 : \Phi(tu) \leq a \} ,
\]
from (3.4) we deduce that the function \(\{ u \mapsto t(u) \} \) is continuous. Then \(r(u) = t(u)u \) is a retraction of \(W^{1,p}_0(\Omega) \setminus \{ 0 \} \) onto \(\Phi^a \). Since \(W^{1,p}_0(\Omega) \setminus \{ 0 \} \) is contractible in itself, the same is true for \(\Phi^a \). \(\square \)

Lemma 3.3. Assume that 0 is an isolated critical point of \(\Phi \). Then the following facts hold:

(a) if there exists \(\delta > 0 \) such that \(G(x,s) \geq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \), we have \(C^q(\Phi,0) \neq 0 \) for
\[
q = i \left(\left\{ u \in W^{1,p}_0(\Omega) \setminus \{ 0 \} : \int_{\Omega} |\nabla u|^p \, dx \leq \lambda \int_{\Omega} V |u|^p \, dx \right\} \right) ;
\]

(b) if there exists \(\delta > 0 \) such that \(G(x,s) \leq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \), we have \(C^q(\Phi,0) \neq 0 \) for
\[
q = i \left(\left\{ u \in W^{1,p}_0(\Omega) : \int_{\Omega} |\nabla u|^p \, dx < \lambda \int_{\Omega} V |u|^p \, dx \right\} \right) .
\]

Proof. By replacing \((\lambda,V) \) with \((-\lambda,-V) \) if necessary, we may assume that \(\lambda \geq 0 \). Let \(\vartheta : \mathbb{R} \rightarrow [0,1] \) be a \(C^\infty \)-function such that \(\vartheta(s) = 0 \) for \(|s| \leq \delta / 2 \) and \(\vartheta(s) = 1 \) for \(|s| \geq \delta \). For every \(t \in [0,1] \), define
\[
G_t(x,s) = G(x,(1-t\vartheta(s))s)
\]
and \(\Phi_t : W^{1,p}_0(\Omega) \rightarrow \mathbb{R} \) by
\[
\Phi_t(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \frac{\lambda}{p} \int_{\Omega} V |u|^p \, dx - \int_{\Omega} G_t(x,u) \, dx .
\]
From \((g1')\) it follows that each \(\Phi_t \) satisfies the Palais-Smale condition over every bounded subset of \(W^{1,p}_0(\Omega) \) (see also [9, Proposition 4.3]). Moreover the map \(\{ t \mapsto \Phi_t \} \) is continuous from \([0,1]\) into \(C^1(B) \) for every bounded subset \(B \) of \(W^{1,p}_0(\Omega) \). We claim that there exists \(\rho > 0 \) such that each \(\Phi_t \) has no critical point in \(B_\rho \) other than 0. By contradiction, let \((t_j) \) be a sequence in \([0,1]\) and \((u_j) \) a sequence convergent to 0 with \(\Phi_{t_j}'(u_j) = 0 \).
and \(u_j \neq 0 \). Then the same regularity argument of Guedda and Veron [13, Propositions 1.2 and 1.3] shows that \((u_j)\) is convergent to 0 also in \(L^\infty(\Omega) \). Therefore we have \(\Phi'(u_j) = 0 \) eventually as \(j \to \infty \). Since 0 is an isolated critical point of \(\Phi \), a contradiction follows. From Theorem 2.2 we deduce that \(C^q(\Phi,0) \approx C^q(\Phi_1,0) \) for any \(q \geq 0 \).

Observe also that

\[
\int_\Omega G_1(x,u) \, dx = o(\|u\|^p) \quad \text{as} \quad \|u\| \to 0 \tag{3.5}
\]

(see, e.g., [9, Proposition 4.3]).

In case \((a)\), we have \(G_1(x,s) \geq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \). If the set \(\{ x \in \Omega : V(x) > 0 \} \) has positive measure and \(\lambda \geq \lambda_1 \), take \(k \geq 1 \) such that \(\lambda_k \leq \lambda < \lambda_{k+1} \) and define \(W_-, W_+ \) as in Proposition 2.5. Otherwise, let \(W_- = \{0\} \) and \(W_+ = W_1^{1,p}(\Omega) \).

In any case, \(W_-, W_+ \) are two symmetric cones in \(W_1^{1,p}(\Omega) \) satisfying (2.1) and

\[
i(W_- \setminus \{0\})
= i \left(\left\{ u \in W_0^{1,p}(\Omega) \setminus \{0\} : \int_\Omega |\nabla u|^p \, dx \leq \lambda \int_\Omega V |u|^p \, dx \right\} \right), \tag{3.6}
\]

\[
\int_\Omega |\nabla u|^p \, dx \leq \lambda \int_\Omega V |u|^p \, dx \quad \forall u \in W_-, \tag{3.7}
\]

\[
\exists \sigma \in]0,1[, \quad (1 - \sigma) \int_\Omega |\nabla u|^p \, dx \geq \lambda \int_\Omega V |u|^p \, dx \quad \forall u \in W_+. \tag{3.8}
\]

From (3.7) and the sign information on \(G_1 \), it follows

\[
\Phi_1(u) \leq 0 \quad \text{for every} \quad u \in W_- \quad \text{with} \quad \|u\| \leq \rho \tag{3.9}
\]

for any \(\rho > 0 \). On the other hand, combining (3.5) and (3.8), we get

\[
\Phi_1(u) \geq 0 \quad \text{for every} \quad u \in W_+ \quad \text{with} \quad \|u\| \leq \rho \tag{3.10}
\]

provided that \(\rho \) is sufficiently small. Therefore also (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.6).

In case \((b)\), we have \(G_1(x,s) \leq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \). If the set \(\{ x \in \Omega : V(x) > 0 \} \) has positive measure and \(\lambda > \lambda_1 \), take now
\[\lambda_k < \lambda \leq \lambda_{k+1} \] and define \(W_- \), \(W_+ \) as in Proposition 2.5. Otherwise, let \(W_- = \{0\} \) and \(W_+ = W_0^{1,p}(\Omega) \). In any case, \(W_- \), \(W_+ \) are two symmetric cones in \(W_0^{1,p}(\Omega) \) satisfying (2.1) and

\[
i(W_0^{1,p}(\Omega) \setminus W_+)
= i \left(\left\{ u \in W_0^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^p \, dx < \lambda \int_{\Omega} V |u|^p \, dx \right\} \right), \tag{3.11}
\]

\[
\exists \sigma \in [0,1]: (1 + \sigma) \int_{\Omega} |\nabla u|^p \, dx \leq \lambda \int_{\Omega} V |u|^p \, dx \quad \forall u \in W_- \tag{3.12}\]

\[
\int_{\Omega} |\nabla u|^p \, dx \geq \lambda \int_{\Omega} V |u|^p \, dx \quad \forall u \in W_+. \tag{3.13}
\]

Combining (3.5) with (3.12), we get again (3.9) if \(\rho \) is sufficiently small. On the other hand, from (3.13) and the sign information on \(G_1 \) we deduce (3.10) for any \(\rho > 0 \). Then (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.11).

Now we can prove the main result of the section.

Theorem 3.4. Let us suppose that assumptions \((g'^1) - (g'^3)\) hold and let \(V \in \mathcal{V}(\Omega) \). Then, for every \(\lambda \in \mathbb{R} \), problem (3.1) has a nontrivial solution \(u \in W_0^{1,p}(\Omega) \) in each of the following cases:

\((a) \) there exists \(\delta > 0 \) such that \(G(x, s) \geq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \),

\((b) \) there exists \(\delta > 0 \) such that \(G(x, s) \leq 0 \) for a.e. \(x \in \Omega \) and every \(s \in \mathbb{R} \) with \(|s| \leq \delta \).

Proof. A standard argument shows that \(\Phi \) satisfies the Palais-Smale compactness condition (see, e.g., [9, Proposition 4.3]).

Suppose, for a contradiction, that the origin is the only critical point of \(\Phi \). By Lemma 3.2 there exists \(a < 0 \) such that \(\Phi^a \) is contractible in itself. On the other hand, by the second deformation lemma (see e.g. Chang [3] or Mawhin and Willem [17]), \(\Phi^0 \) is a deformation retract of \(W \) and \(\Phi^a \) is a deformation retract of \(\Phi^0 \setminus \{0\} \), so

\[
C^q(\Phi, 0) = H^q(\Phi^0, \Phi^0 \setminus \{0\}) \approx H^q(W, \Phi^0) = 0 \quad \text{for every } q \geq 0.
\]

By Lemma 3.3 a contradiction follows.
For the sake of completeness, let us state a simple extension of a result of Perera [19], which can be proved by the same argument.

Theorem 3.5. Let us suppose that assumptions $(g1') - (g3')$ hold, let $V \in \mathcal{V}(\Omega)$ and let $\lambda \geq 0$. If the set $\{ x \in \Omega : V(x) > 0 \}$ has positive measure, assume also that $\lambda \notin \{ \lambda_k : k \geq 1 \}$, where (λ_k) is the sequence defined in (2.4).

Then problem (3.1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$.

Thus, the extra assumption on λ is compensated by the fact that there is no sign condition on G. Observe that the union of Theorems 3.4 and 3.5 provides a complete extension to the case $p \neq 2$ of S.J. Li and Willem [15, Theorem 4].

4 Proof of Theorem 1.1

Since $V \in L^\infty(\Omega)$, we have $V \in \mathcal{V}(\Omega)$. It is also standard that assumptions $(g1) - (g3)$ imply $(g1') - (g3')$ (see e.g. Degiovanni and Lancelotti [9]). Then the assertion follows from Theorem 3.4.

References

