Spatio-temporal temperature profiles experimentally observed during the operation of a structured perovskite-based catalytic monolith for the combustion of methane were simulated by means of a transient heterogeneous one-dimensional model which accounts for heat losses to the surroundings and thermal conductivity inside the monolith substrate. In fact it is shown that such thermal phenomena are essential to correctly reproduce the slow warm-up transients and the wrong-way behavior observed in a low conductivity ceramic monolith. Model simulations reveal that at higher values of solid conductivity the catalyst does not exhibit hot spot both in time and space, but needs higher inlet gas temperatures to reach complete methane conversion. Bifurcation analysis of the catalytic monolith reactor model were carried out to study steady-state multiplicity. We show that the origin of multiplicity is purely thermal as it is mainly ruled by the heat transfer through the external surface

TEMPERATURE EXCURSIONS DURING THE TRANSIENT BEHAVIOR OF HIGH TEMPERATURE CATALYTIC COMBUSTION MONOLITHS / A., Di Benedetto; S., Cimino; Pirone, Raffaele; G., Russo. - In: CATALYSIS TODAY. - ISSN 0920-5861. - STAMPA. - 83:(2003), pp. 171-182. [10.1016/S0920-5861(03)00227-X]

TEMPERATURE EXCURSIONS DURING THE TRANSIENT BEHAVIOR OF HIGH TEMPERATURE CATALYTIC COMBUSTION MONOLITHS

PIRONE, RAFFAELE;
2003

Abstract

Spatio-temporal temperature profiles experimentally observed during the operation of a structured perovskite-based catalytic monolith for the combustion of methane were simulated by means of a transient heterogeneous one-dimensional model which accounts for heat losses to the surroundings and thermal conductivity inside the monolith substrate. In fact it is shown that such thermal phenomena are essential to correctly reproduce the slow warm-up transients and the wrong-way behavior observed in a low conductivity ceramic monolith. Model simulations reveal that at higher values of solid conductivity the catalyst does not exhibit hot spot both in time and space, but needs higher inlet gas temperatures to reach complete methane conversion. Bifurcation analysis of the catalytic monolith reactor model were carried out to study steady-state multiplicity. We show that the origin of multiplicity is purely thermal as it is mainly ruled by the heat transfer through the external surface
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2497410
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo