[Article] Short-time dynamics of correlated magnetic moments in superparamagnetic Cu-Co melt spun alloys exhibiting giant magnetoresistance

Original Citation:

Availability:
This version is available at: http://porto.polito.it/2498098/ since: July 2012

Publisher:
AIP

Published version:
DOI:10.1063/1.365175

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved"), as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

Publisher copyright claim:
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in "JOURNAL OF APPLIED PHYSICS" and may be found at 10.1063/1.365175.
Short-time dynamics of correlated magnetic moments in superparamagnetic Cu–Co melt spun alloys exhibiting giant magnetoresistance

P. Allia, P. Tiberto, and F. Vinai

Citation: Journal of Applied Physics 81, 4599 (1997); doi: 10.1063/1.365175
View online: http://dx.doi.org/10.1063/1.365175
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/81/8?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Coercivity extrema in melt-spun CuCo ribbons: Effects of the magnetic moment distribution
J. Appl. Phys. 86, 3010 (1999); 10.1063/1.371161

Giant magnetoresistance and remanence in granular CoCu codeposited films

Giant magnetoresistance in granular CuFeNi alloys

Correlation between magnetic interactions and giant magnetoresistance in melt-spun Co 10 Cu 90 granular alloys
J. Appl. Phys. 82, 3047 (1997); 10.1063/1.366164

Determination of the upper limit of the magnetic moment in the magneto-resistance by using its irreversible temperature and square magnetization dependences in (Cu-rich)-TM melt-spun systems
J. Appl. Phys. 81, 4596 (1997); 10.1063/1.365174
Short-time dynamics of correlated magnetic moments in superparamagnetic Cu–Co melt spun alloys exhibiting giant magnetoresistance

P. Allia
Dipartimento di Fisica Politecnico di Torino and INFN, I-10129 Torino, Italy

P. Tiberto and F. Vinai
IEN Galileo Ferraris and INFN, I-10125 Torino, Italy

Evidence for correlation among superparamagnetic particles in melt-spun Cu$_{100-x}$Co$_x$ systems ($x = 5–20$) exhibiting a giant magnetoresistance is obtained by plotting this quantity as a function of reduced magnetization. Two ranges, $R_\phi(H_e)$ and $R_\theta(H_e)$, have been recently introduced to describe the extent of correlation among angles of tilt ($\theta$) and of twist ($\phi$) of superparamagnetic moments precessing around a local field axis. The angle of tilt appears to be spatially correlated over a distance larger by a factor of 3 than the angle of twist. This difference is explained by analyzing the short-time dynamics of magnetic moments in superparamagnetic granular systems with long-range interactions (of dipolar and the RKKY-like type). The typical time constants characterizing the process of scattering of conduction electrons by adjacent magnetic moments (electronic time of flight, relaxation times for $\theta$ and $\phi$) are discussed in detail. An explicit expression for $R_\phi(H)$ is obtained by considering the competition between a magnetic interaction favoring parallel (or antiparallel) alignment or adjacent moments, and thermal disturbances resulting in a continuous loss of the phase coherence. © 1997 American Institute of Physics. [S0021-8979(97)69808-4]

Granular magnetic systems, where nanometer-sized, superparamagnetic particles of a ferromagnetic metal are dispersed in a nonmagnetic metal, developed in view of their prospective applications in magnetic recording, are still attracting considerable interest from the fundamentalist’s viewpoint, owing to their isotropic giant magnetoresistance (GMR), often exhibited even at room temperature. Among these materials, the Cu$_{100-x}$Co$_x$ system plays a relevant role, because it can be easily obtained in ribbon form over a wide composition range ($0<x<20$) by planar flow quenching on a rotating drum, followed by proper annealing. Varying the annealing conditions and/or methods brings about a variety of granular structures characterized by rather different average values of the particle sizes. On the other hand, the width of the particle-size distribution appears to be affected to a lesser extent by annealing. These results, indirectly obtained from room-temperature magnetization curves, have been recently confirmed by independent low-temperature magnetic-susceptibility measurements.

Plots of GMR versus reduced magnetization $m = M/M_s$ provide compelling evidence for magnetic correlation among superparamagnetic particles. In fact, the so-called reduced GMR, $(\Delta R/R)_\text{red}$ (a quantity defined in Ref. 3 and obtained by properly rescaling the GMR data) always displays a definite nonparabolic behavior when plotted against $m$, in disagreement with the prediction for uncorrelated magnetic particles, $(\Delta R/R)_\text{red} = 1 - m^2$. The typical flattening of actual $(\Delta R/R)_\text{red}$ vs $m$ curves with respect to a parabola (see Fig. 1) has been explained by a phenomenological theory, providing an expression for $(\Delta R/R)_\text{red}$ in systems characterized by superparamagnetic particles of magnetic moment $\mu$:

$$\frac{\Delta R}{R}_\text{red} = 1 - \left[ \langle u^2 \rangle - \langle \bar{u}^2 \rangle \right] \exp \left[ -\lambda/\mu H_e \right] + \left[ 1 - \langle \bar{u}^2 \rangle \right] \exp \left[ -\lambda/\mu H_e \right]$$

where $u = \cos \theta$, $\bar{u} = m = L(x)$, $L(x)$ is the Langevin’s function, and $x = \mu H_e/k_B T$, $\langle u^2 \rangle = 1 - 2L(x)/x$, $\lambda$ is an effect.
The quantities $R_i$ and $R_f$ are given in Ref. 3, where both scales were multiplied by a factor of 100. As a consequence, the relaxation process is continuous angle between the considered moments. As a matter of fact, the time of flight of a conduction electron between adjacent scatterers may be estimated to be of the order of $6 \times 10^{-15}$ s with a Fermi velocity of about $10^6$ cm/s and an average intercluster distance of about $6 \times 10^{-7}$ cm, as experimentally observed in the Cu$_{100-x}$Co$_x$ system (this is actually the distance between the borders of adjacent clusters; the average distance between centres is of the order of $1 \times 10^{-6}$ m). On the other hand, the moments’ directions in the super-paramagnetic regime fluctuate in space by effect of both thermal and magnetic torques. Changes in the angle of tilt, involving changes in the local Zeeman energy, are related to the interaction between the localized moment and the thermal excitations of the lattice. Applying Néel’s or Brown’s models for the superparamagnetic relaxation, and using the values $K \approx 1 \times 10^6$ erg/cm$^3$ for the magnetic anisotropy energy, $V \approx 7 \times 10^{-20}$ cm$^3$ for the average cluster volume, and a pre-exponential factor $f_0 \approx 10^{10}$ s$^{-1}$, a relaxation time $\tau_1 = f_0^{-1} \exp(KV/k_B T)$ of the order of $5 \times 10^{-10}$ s is found at room temperature. The angle of twist is more sensitive to the fluctuations in the local field acting on each localized moment, as in the case of paramagnetic resonance and relaxation. The relaxation time for the angle of twist, $\tau_2$, is of the order of $(\gamma H_i)^{-1}$, where $\gamma$ is the gyromagnetic ratio and $H_i$ is the rms magnetic field present on each site, arising from long-range interactions among moments, such as dipolar or RKKY-like interactions. Using $H_i \approx 5 \times 10^2$ Oe (a value to be justified later), one finds $\tau_2 \approx 2 \times 10^{-10}$ s, not much smaller than $\tau_1$. These values should be intended as merely representative quantities. The spread in the cluster sizes may bring about significant local deviations from these average values.

An expression for $R_{\phi}(H_e)$ can be obtained considering the short-time dynamics of magnetic moments. The main points of the theory follow: Let us consider a pair of magnetic moments $\mu_i, \mu_k$, initially rotating with the same phase angle around the local field axis (supposed to be the same for both moments). We admit the existence of a weak interaction of the type $\epsilon_{ik} = -\lambda_{ik} \mu_i^2 \cos \theta_{ik}$ favoring parallel (or antiparallel) alignment of moments, where $\theta_{ik}$ is the instantaneous angle between $\mu_i$ and $\mu_k$ and $|\lambda_{ik}| \approx 1/r_{ik}^3$ for both dipolar and RKKY-like interactions. If a change $\eta_{ik}$ in angle $\theta_{ik}$ suddenly occurs at $t = 0$, angle $\phi_t$ will relax toward the new $\phi_t$ in order to reduce the coupling energy. However, the corresponding relaxation rate, $\tau_{\eta_{ik}} = \gamma_{ik} \mu \sin \theta_{ik} \sin \theta_t$, where $\theta_{ik}$, $\theta_t$ are the tilt angles, is generally much smaller than $\tau_1^{-1}$, i.e., the rate at which the twist-angle coherence is lost. As a consequence, the relaxation process is continuously interrupted by new fluctuation events. Similar results are found considering the effect of $z$ neighboring moments on the $i$th moment; a linear relation can be easily obtained between the twist-angle fluctuation $\eta_{ik}$ and the ones occurring at adjacent sites:

$$R_{\phi}(H_e) = \sqrt{\frac{\mu_i^2}{k_B T}} \alpha L'(x),$$  

where $L'(x)$ is the first derivative of $L(x)$ with respect to its argument, and $\alpha = (1/3) \Sigma \lambda_{ik} r_{ik}^{-2}$ contains the strength $\lambda_{ik}$ of the coupling between particles $i$ and $k$, where $r_{ik}$ is the interparticle distance. For the sake of simplicity, $R_{\phi}(H_e)$ was given in Ref. 3 the same functional dependence on $H_e$ as $R_{\phi}(H_e)$, but without any attempt of justifying this assumption.

Second, collecting the $R_{\phi}(0)/\lambda$ and $R_{\phi}(0)/\lambda$ values obtained from best fit of a number of experimental GMR vs $m$ curves, and plotting one correlation length against the other, a linear relationship is clearly found, although the data are slightly scattered [see Fig. 2, where the plotted data refer to 34 alloys of the system Cu$_{100-x}$Co$_x$ (5$\leq x \leq 20$) and submitted to various annealing treatments]. Note that the data reported here are comprehensive of the ones plotted in Fig. 16 of Ref. 3, where both scales were multiplied by a factor of $\sqrt{3}$ with respect to the present plot; this discrepancy is, however, irrelevant to the following discussion. A ratio $R_{\phi}(0)/R_{\phi}(0) \approx 3$ emerges from Fig. 2. Such a result has not been explained thus far.

The inadequacy of the model of independent moments can be related to two orders of reasons: First, the magnetic moments cannot be assumed as completely uncorrelated, owing to their long-range magnetic interactions; second, the time scale of the sequential scattering of a conduction electron by two adjacent magnetic moments is much shorter than the characteristic relaxation times associated to the changes in the moments’ directions by effect of random disturbances, so that the electrons are actually sensitive to the instantaneous angle between the considered moments. As a matter of fact, the time of flight of a conduction electron between adjacent scatterers may be estimated to be of the order of $6 \times 10^{-15}$ s with a Fermi velocity of about $10^6$ cm/s and an average intercluster distance of about $6 \times 10^{-7}$ cm, as experimentally observed in the Cu$_{100-x}$Co$_x$ system (this is actually the distance between the borders of adjacent clusters; the average distance between centres is of the order of $1 \times 10^{-6}$ m). On the other hand, the moments’ directions in the super-paramagnetic regime fluctuate in space by effect of both thermal and magnetic torques. Changes in the angle of tilt, involving changes in the local Zeeman energy, are related to the interaction between the localized moment and the thermal excitations of the lattice. Applying Néel’s or Brown’s models for the superparamagnetic relaxation, and using the values $K \approx 1 \times 10^6$ erg/cm$^3$ for the magnetic anisotropy energy, $V \approx 7 \times 10^{-20}$ cm$^3$ for the average cluster volume, and a pre-exponential factor $f_0 \approx 10^{10}$ s$^{-1}$, a relaxation time $\tau_1 = f_0^{-1} \exp(KV/k_B T)$ of the order of $5 \times 10^{-10}$ s is found at room temperature. The angle of twist is more sensitive to the fluctuations in the local field acting on each localized moment, as in the case of paramagnetic resonance and relaxation. The relaxation time for the angle of twist, $\tau_2$, is of the order of $(\gamma H_i)^{-1}$, where $\gamma$ is the gyromagnetic ratio and $H_i$ is the rms magnetic field present on each site, arising from long-range interactions among moments, such as dipolar or RKKY-like interactions. Using $H_i \approx 5 \times 10^2$ Oe (a value to be justified later), one finds $\tau_2 \approx 2 \times 10^{-10}$ s, not much smaller than $\tau_1$. These values should be intended as merely representative quantities. The spread in the cluster sizes may bring about significant local deviations from these average values.

An expression for $R_{\phi}(H_e)$ can be obtained considering the short-time dynamics of magnetic moments. The main points of the theory follow: Let us consider a pair of magnetic moments $\mu_i, \mu_k$, initially rotating with the same phase angle around the local field axis (supposed to be the same for both moments). We admit the existence of a weak interaction of the type $\epsilon_{ik} = -\lambda_{ik} \mu_i^2 \cos \theta_{ik}$ favoring parallel (or antiparallel) alignment of moments, where $\theta_{ik}$ is the instantaneous angle between $\mu_i$ and $\mu_k$ and $|\lambda_{ik}| \approx 1/r_{ik}^3$ for both dipolar and RKKY-like interactions. If a change $\eta_{ik}$ in angle $\theta_{ik}$ suddenly occurs at $t = 0$, angle $\phi_t$ will relax toward the new $\phi_t$ in order to reduce the coupling energy. However, the corresponding relaxation rate, $\tau_{\eta_{ik}} = \gamma_{ik} \mu \sin \theta_{ik} \sin \theta_t$, where $\theta_{ik}, \theta_t$ are the tilt angles, is generally much smaller than $\tau_1^{-1}$, i.e., the rate at which the twist-angle coherence is lost. As a consequence, the relaxation process is continuously interrupted by new fluctuation events. Similar results are found considering the effect of $z$ neighboring moments on the $i$th moment; a linear relation can be easily obtained between the twist-angle fluctuation $\eta_{ik}$ and the ones occurring at adjacent sites:

$$R_{\phi}(H_e) = \sqrt{\frac{\mu_i^2}{k_B T}} \alpha L'(x),$$  

where $L'(x)$ is the first derivative of $L(x)$ with respect to its argument, and $\alpha = (1/3) \Sigma \lambda_{ik} r_{ik}^{-2}$ contains the strength $\lambda_{ik}$ of the coupling between particles $i$ and $k$, where $r_{ik}$ is the interparticle distance. For the sake of simplicity, $R_{\phi}(H_e)$ was given in Ref. 3 the same functional dependence on $H_e$ as $R_{\phi}(H_e)$, but without any attempt of justifying this assumption.

Second, collecting the $R_{\phi}(0)/\lambda$ and $R_{\phi}(0)/\lambda$ values obtained from best fit of a number of experimental GMR vs $m$ curves, and plotting one correlation length against the other, a linear relationship is clearly found, although the data are slightly scattered [see Fig. 2, where the plotted data refer to 34 alloys of the system Cu$_{100-x}$Co$_x$ (5$\leq x \leq 20$) and submitted to various annealing treatments]. Note that the data reported here are comprehensive of the ones plotted in Fig. 16 of Ref. 3, where both scales were multiplied by a factor of $\sqrt{3}$ with respect to the present plot; this discrepancy is, however, irrelevant to the following discussion. A ratio $R_{\phi}(0)/R_{\phi}(0) \approx 3$ emerges from Fig. 2. Such a result has not been explained thus far.

The inadequacy of the model of independent moments can be related to two orders of reasons: First, the magnetic moments cannot be assumed as completely uncorrelated, owing to their long-range magnetic interactions; second, the
\[ \eta_i = \gamma \mu (\sin^2 \theta) \tau_i^2 \sum_k \lambda_{ik} \eta_k, \]  

(3)

where \((\cdots)\) means the expectation value, \((\tau_i^2)^{-1}\) is the rate of loss of phase coherence between moment \(i\) and any of the \(z\) surrounding moments: \(\tau_i^2 \equiv \tau_2/z\), \(\tau_2\) is usually referred to a single pair of adjacent moments. In the presence of an external field, \(\tau_z^2(\gamma H_e)^{-1}\), with \(\textbf{H}_e = \textbf{H}_i + H_e\). As a consequence,

\[ \eta_i \equiv \frac{1}{zH_i} \mu (\sin^2 \theta) \sum_k \lambda_{ik} \eta_k \]  

(4)

at any site. Such a linear relation connecting fluctuations at neighboring sites allows one to write an expression for the correlation length \(R/H_e\):

\[ R/H_e \approx \left( \frac{1}{zH_i} \mu \frac{2L(x)}{x} \alpha \right)^{1/2}, \]  

(5)

where \((\sin^2 \theta)\) has been rewritten as \(2 L(x)/x\). When \(H_e=0\), \(R(0)\) and \(R(\Phi)\) take the form

\[ R(0)^{1/2} = \left( \frac{1}{z} \mu \frac{2}{k_B T} \alpha \right); \quad R(\Phi)^{1/2} = \left( \frac{\mu^2}{k_B T} \frac{1}{3} \alpha \right)^{1/2}, \]  

(6)

so that the ratio \(R(\Phi)/R(0)\) is

\[ \frac{R(\Phi)}{R(0)} = \left( \frac{\mu H_i}{k_B T} \right)^{1/2}. \]  

(7)

Note that this ratio does not contain the parameter \(a\). The internal field \(H_i\) may be estimated (both for dipolar and RKKY-like interactions) as \(H_i \approx (2 \mu^2 \Sigma_{r \neq i} (3a))^{1/2} \approx 2^{3/2} \mu/\alpha^3\), where \(a\) is the average interparticle distance.

Typical values of \(H_i\) for the Co_{100-x}Cu_x system are in the range \(2 \times 10^2 - 1 \times 10^3\) Oe, depending on \(\mu\) and \(a\) values. Taking values appropriate to the whole family of alloys studied (\(\mu \approx 10^{-16}\) emu, \(H_i \approx 2 \times 10^2\) Oe, \(k_B T \approx 4 \times 10^{-14}\) erg/atom, \(z \approx 25\)), one gets \(R(\Phi)/R(0) \approx 3\), in excellent agreement with the experimental result. The value \(z \approx 25\) for the total number of magnetic particles effective in influencing the motion of the \(r\)th moment has been derived by comparing the values of all the parameters \(R(\Phi)\) [obtained by fitting the \((\Delta R/R)_{\text{red}} vs m\) curves to Eq. (1)] with the corresponding theoretical expression, which can be rewritten as \(R(\Phi) \approx \eta^{1/2} (\mu^2/k_B T / (3a))^{1/2} \approx \eta^{1/2} S\), because \(\eta = z/a\). Using the values for \(\mu\) and \(a\) obtained from the fits of magnetization curves, the quantity \(S\) is found for each alloy.

Plotting \(R(\Phi)\) as a function of \(S\), a linear relation of the type \(R(\Phi) = 5 S\) is actually found.

Finally, two comments about the new expression for \(R(\Phi)\) are needed. First, substituting Eq. (5) to the expression used in Ref. 3 [formally identical to the one for \(R(\Phi)\)] has only minor effects on the fits of experimental curves to Eq. (1). In particular, the values of \(R(\Phi)\) and \(R(0)\) derived using Eq. (1) with the new functional dependence of \(R(\Phi)\) always remain almost coincident with the ones obtained in Ref. 3. The second comment is about the different characters of the expressions for the two angular correlation ranges [Eqs. (2) and (5)]. In fact, twist-angle correlation occurs between instantaneous \(\delta\) values, while tilt-angle correlation is between expectation values of \(u = \cos \theta\), as evidenced by the presence of the \(L^3(\theta)\) function. Such a difference reflects the fact that fluctuations in \(\theta\) and in \(\phi\) occur via quite different mechanisms. Thermal excitations are needed to induce changes in \(\theta\), involving an exchange of energy between a magnetic moment and the environment. The effects of such excitations on adjacent moments are completely random, so that instantaneous tilt-angle fluctuations are essentially uncorrelated. A spatial correlation exists, therefore, only between expectation values of \(u\). On the contrary, the local field \(H_e(r,t)\), whose fast changes with time are responsible for twist-angle fluctuations, is weakly dependent on position over distances of the order of the interparticle distance, so that instantaneous fluctuations of \(\phi\) on adjacent moments may be substantially correlated, as shown in this paper.

This work was partially supported by CNR, Grants Nos. 115.25434 and 96.00262.CT02.