A new multi-physics simulation tool – FRENETIC (Fast REactor NEutronics/Thermal-hydraulICs) – is presented for the quasi-3D analysis of a lead-cooled fast reactor core with the hexagonal fuel element configuration, as currently proposed within the framework of the European project LEADER. The tool implements coupled neutronic (NE) and thermal-hydraulic (TH) models. In the NE module, a 2D + 1D full-core multi-group diffusion solver has been developed based on a coarse-mesh nodal scheme and adapted to cope with the hexagonal geometry. In the TH module, the hexagonal elements, described by 1D (axial) transient advection and conduction in the coolant coupled to conduction in the fuel pins, are thermally coupled to each other in the transverse directions to obtain the full-core evolution of the distribution of the TH variables. The NE and TH modules are coupled at each TH time step by transferring to the TH module the distribution of the power source computed by the NE module, which is the driver of the TH evolution; alternately, the temperature distribution computed by the TH module is input to the NE module, in order to update the cross sections. The code is benchmarked against pure TH and pure NE analytical solutions and the results of a coupled NE/TH pseudo-transient (criticality search) are also presented. The convergence of the numerical solution is demonstrated both in space and time by computational simulations.

A full-core coupled neutronic/thermal-hydraulic code for the modeling of lead-cooled nuclear fast reactors / Bonifetto, Roberto; Dulla, Sandra; Ravetto, Piero; Savoldi, Laura; Zanino, Roberto. - In: NUCLEAR ENGINEERING AND DESIGN. - ISSN 0029-5493. - STAMPA. - 261:(2013), pp. 85-94. [10.1016/j.nucengdes.2013.03.030]

A full-core coupled neutronic/thermal-hydraulic code for the modeling of lead-cooled nuclear fast reactors

BONIFETTO, ROBERTO;DULLA, SANDRA;RAVETTO, PIERO;SAVOLDI, LAURA;ZANINO, Roberto
2013

Abstract

A new multi-physics simulation tool – FRENETIC (Fast REactor NEutronics/Thermal-hydraulICs) – is presented for the quasi-3D analysis of a lead-cooled fast reactor core with the hexagonal fuel element configuration, as currently proposed within the framework of the European project LEADER. The tool implements coupled neutronic (NE) and thermal-hydraulic (TH) models. In the NE module, a 2D + 1D full-core multi-group diffusion solver has been developed based on a coarse-mesh nodal scheme and adapted to cope with the hexagonal geometry. In the TH module, the hexagonal elements, described by 1D (axial) transient advection and conduction in the coolant coupled to conduction in the fuel pins, are thermally coupled to each other in the transverse directions to obtain the full-core evolution of the distribution of the TH variables. The NE and TH modules are coupled at each TH time step by transferring to the TH module the distribution of the power source computed by the NE module, which is the driver of the TH evolution; alternately, the temperature distribution computed by the TH module is input to the NE module, in order to update the cross sections. The code is benchmarked against pure TH and pure NE analytical solutions and the results of a coupled NE/TH pseudo-transient (criticality search) are also presented. The convergence of the numerical solution is demonstrated both in space and time by computational simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2506402
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo