[Article] Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease

Original Citation:

Availability:
This version is available at: http://porto.polito.it/2507426/ since: May 2013

Publisher:
Elsevier

Published version:
DOI:10.1016/j.diabres.2013.03.032.

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article ("Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0"), as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

(Article begins on next page)
Automated Carotid IMT and its link to HbA1c in 370 Japanese Coronary Artery Disease Patients

Luca Saba¹, MD, Nobutaka Ikeda², MD, Martino Deidda¹, MD, Tadashi Araki², MD, Filippo Molinari³, PhD, Kristen M. Meiburger³, MS, U Rajendra Acharya⁴,⁵, PhD., Yoshinori Nagashima², MD, Giuseppe Mercuro¹, MD., Masatake Nakano⁶, MD, Andrew Nicolaides⁷, PhD., Jasjit S. Suri⁸,⁹, MS, PhD, MBA, Fellow AIMBE

¹ Department of Imaging Sciences, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari – Polo di Monserrato; Università di Cagliari, s.s. 554 Monserrato (Cagliari) 09045, ITALY
² Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi Meguro-ku, Tokyo, JAPAN
3 Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, ITALY
4 Department of Electronics and Communication Engineering, Ngee Ann Polytechnic University, SINGAPORE 599489
5 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
6 CVPath Institute Inc., Gaithersburg, MD, USA
7 Vascular Diagnostic Center, Nicosia, Cyprus
8 CTO, AtheroPoint LLC, CA, USA.
9 Biomedical Engineering Department (Aff.), Idaho State University ID, USA.

Corresponding Author:

Professor Filippo Molinari, PhD

Biolab - Department of Electronics and Telecommunications - Politecnico di Torino

Corso Duca degli Abruzzi, 24; 10129 Torino, Italy;

(e-mail: filippo.molinari@polito.it, tel: +39 11 564 4135)
ABSTRACT

Aims: The purpose of this study was to evaluate whether the carotid IMT identified by using automated software is associated with HbA1c in Japanese Coronary Artery Disease Patients.

Methods: 370 consecutive patients (males 218; median age 69 years ± 11) who underwent carotid-US and first coronary angiography were prospectively analyzed. After ultrasonographic examinations were performed, the plaque score (PS) was calculated and automated IMT analysis was obtained with a dedicated algorithm. Pearson correlation analysis was performed to calculate the association between automated IMT, PS and HbA1c.

Results: The mean value of cIMT was 1.00±0.47 mm for the right carotid and 1.04±0.49 mm for the left carotid; the average bilateral value was 1.02±0.43 mm. No significant differences of cIMT were detected between men and women. We found a direct correlation between the cIMT values and the levels of HbA1c (p=0.0007) whereas the plaque score did not correlate with the HbA1c values (p > 0.05)

Conclusion: Results of our study confirm that the automated cIMT values and the levels of HbA1c in Japanese Coronary Artery Disease Patients are correlated whereas the plaque score does not show any statistically significant correlation.

Keywords: ultrasonography, intima-media thickness, carotid, HbA1c, automated measurement.
Introduction

Intima media thickness of the carotid arteries (cIMT) is a validated surrogate marker of early atherosclerosis and is associated with coronary atherosclerosis [1] and with the risk of future vascular events [2]. Because it can be measured relatively simply and noninvasively, it is well suited for use in large-scale population studies. Ultrasonic measurements correlate well with histology [3, 4] and increased IMT is associated with vascular risk factors [5] and the presence of more advanced atherosclerosis [6], which includes coronary artery disease (CAD).

In the past years, the cIMT was calculated by the sonographers that performed the examination by tracing a line between the two interfaces lumen\intima and media\adventia [7]. In the last years, thanks to the rapidly growing of the hardware and algorithms analysis [8], it became possible to automatically calculate the cIMT [9-11] avoiding one of the most important limit of the manual analysis of the IMT: the poor inter\intra-observer agreement [12, 13].

The important role of long-term hyperglycemia in the development of atherosclerosis is known and a correlation between HbA1c and cIMT was demonstrated especially in women [14] and in children [15, 16] affected by type 1 diabetes. The accurate monitoring in critical patients, such as the patients with type 2 diabetes, is crucial since persons with diabetes have 2-6 folds higher cardiovascular risk than subjects without diabetes [17-19]. Recently, male gender was also associated to a more rapid increase of the cIMT even in Type 2 diabetes [20], thus further increasing the need for accurate measurement and monitoring. In a recent review, Kurukulasuriya and Sowers showed that the reduction of the glycated hemoglobin (HbA1c) is associated with a lower incidence of myocardial infarction, but they also evidenced that the management of the cardiovascular risk factors experienced by patients with type 2 diabetes required a multidisciplinary approach with implementation of strategies to also improve the
underlying cardiovascular risk factors [21]. It is, therefore, evident that accurate diagnostic and prognostic vascular tools are needed in association to the study and assessment of patients’ HbA1c levels.

In this study, we aimed to evaluate whether the cIMT identified by using automated software called AtheroEdge, which can process a large set of ultrasound images automatically, was associated with HbA1c levels in a population affected by CAD.

Material and Methods

Patient population. Three-hundred-seventy consecutive Japanese patients (males 218, females 152; median age 69 ± 11 years) admitted to Toho University Ohashi Medical Center from December 2008 to January 2011 who underwent carotid-US and first coronary angiography were prospectively analyzed. Coronary angiography was performed to evaluate ischemic heart disease or cardiomyopathy and as the preoperative investigation for ischemic heart, aortic disease, or valvular disease. Our study complied with the Declaration of Helsinki, and written informed consent was obtained from all patients. Part of our population was used in a recently published study [22].

Carotid ultrasonography. Ultrasonographic examinations were performed with a scanner (Aplio XV, Aplio XG, Xario, Toshiba, Inc., Tokyo, Japan) equipped with a 7.5-MHz linear array transducer. All scans were performed by the same experienced sonographer (R Fijisaki with 10 years of experience). Subjects were examined in the supine position with the head tilted backwards. After the carotid arteries were located by transverse scans, the probe was rotated 90° to obtain and acquire a longitudinal image of the anterior and posterior walls. The high-resolution images of the far wall were acquired according to recommendations of the American Society of Echocardiography Carotid Intima-Media Thickness Task Force.
Moreover, the high-resolution images of the internal carotid arteries (ICA) and carotid bulbs (other than the CCA) were acquired in order to calculate the plaque score (PS).

The HbA1c was calculated as the National Glycohemoglobin Standardization Program (NGSP) equivalent value using the following formula: HbA1c (NGSP) (%) = 1.02 × HbA1c (Japan Diabetes Society) (%) + 0.25% [23].

Automated Far Wall LI/MA Delineation. The IMT measurement was completely automated. Our strategy was based on the following three basic steps:

- **Step-1:** automated image cropping.
- **Step-2:** automated carotid artery far wall recognition.
- **Step-3:** automated LI/MA far wall tracings.

For an automated method, we need a correct region of interest, which only consists of tissue region. Therefore, in Step-1, the goal is to automatically crop the region of interest (tissue region) in this ultrasound B-mode image. Since our images are in JPEG format, we adopt a gradient-based strategy, which removes all the image rows and columns that are black and do not contain intensity variations in ultrasound image. The detailed procedure was previously reported by Molinari et al. [24]. Once the grayscale region of interest image was obtained, Step-2 consists of an integrated procedure combining feature extraction and classification was used to automatically track the carotid artery [25, 26]. The hypothesis at the base of this procedure is that the far wall adventitia layer (AD_F) is the brightest feature in the image [27]. Our procedure first identifies all the “seed points”. A seed point is a local intensity maximum with intensity value higher than that of the average surrounding pixels. Seed points are located on the bright features of the image. These seed points are connected to form line segments. Line segments for the cropped image of fig. 1.A are reported in fig. 1.B.
All the line segments are then connected and the one located on the brightest interface is considered as the far adventitia layer profile. The ADF profile for the image in fig. 1.A is depicted by fig. 1.C.

Finally, once the ADF profile was traced, Step-3 consisted of automated LI/MA tracings [26, 28]. We adapted three types of intensities in our approach at this point. Lumen region (cluster 1), the intima or media layer (cluster 2), or the adventitia layer (cluster 3). The pixels at the transitions of the clusters 1 and 2 form the LI boundary, whereas the pixels at the transition between the clusters 2 and 3 form the MA boundary. The final Delineation of the carotid artery of fig. 1.A is shown in fig. 2.

Statistical analysis. Correlation plots were performed to assess the relationship between the cIMT values and Plaque Score versus the percent value of HbA1c. Correlation was numerically measured by using the Pearson rho coefficient along with its 95% confidence interval. The statistical existence of correlation between the variables was measured by the correlation level of significance (correlation was considered significant if the p value was lower than 0.05). The normality of each continuous variable group was tested using the Kolmogorov-Smirnov Z test.

Results and Discussion

AtheroEdge was able to detect the cIMT in all patients and its validation was yet published in previous manuscripts of our group (blinded for peer review). In details, the mean value of cIMT evaluated at level of CCA was 1.00±0.47 mm for the right carotid and 1.04±0.49 mm for the left carotid; the average bilateral value was 1.02±0.43 mm. No significant differences were detected between men and women cIMT. The cIMT values manually measured by an
expert Reader were 0.94±0.29 mm for the right and 1.03±0.41 mm for the left carotid side. Therefore, the measurement bias was equal to 0.06±0.41 mm and 0.01±0.42 for the right and left side, respectively.

Table 1 summarizes the demographics, physical and clinical characteristics of the studied subjects. In our population we had 218 subjects (prevalence of 43.5%) with evidence of coronary artery disease and the SYNTAX score (SXscore) was 8.8 ± 15.0 (Normality rejected with a p value of 0.001). The PlaqueScore (PS) was 7.0 ± 5.3 (Normality rejected with a p value of 0.001) whereas the mean Auto-IMT (obtained by averaging the left and right side) was 0.85 ± 0.25 mm (Normality rejected with a p value of 0.001).

We found a direct correlation between the cIMT values and the levels of HbA1c (rho = 0.1761; p=0.0007; Figure 3A); on the other hand, the plaque score did not correlate with the HbA1c values (rho = 0.0798; p=0.1340; Figure 3B). We also did not find a significant correlation between the cIMT and the glucose (rho = 0.060; p=0.266), LDL (rho = -0.006; p=0.943), and HDL levels (rho = -0.064; p=0.390).

Carotid IMT is considered a reliable measure of generalized atherosclerosis. Previous investigation have demonstrated that a thickened cIMT is correlated with an increased risk of stroke and myocardial infarction [29] and it is predictive of future events of coronary heart diseases in subjects with type 2 diabetes [30, 31]. In this study our purpose was to evaluate whether the cIMT, identified by using AtheroEdge automated software, is associated with HbA1c in Coronary Artery Disease Patients and we found a strong association between cIMT, measured by the means of AtheroEdge, and HbA1c in the whole study population (p = 0.0007).

Previous investigations have demonstrated that there is an association between the diabetes and the IMT [32-34], but the association, and its strength, between IMT and the diabetes is still debated [35]. In 2010, Einarson et al. revised 172 papers and found a weak but
statistically significant correlation between glucose levels and coronary IMT [36]. One of the limitations in the previous studies that explored the association between the atherosclerosis or the arteries’ IMT and diabetes was the technology used for the IMT quantification. In particular it is well known that the IMT can suffer of multiple bias and in particular the poor inter-observer agreement [37]. Lorentz et al., in a meta-analysis of 8 studies which represent 37197 subjects, highlight multiple sources of heterogeneity between the studies based on the cIMT assessment: these include the details of the ultrasound protocol, namely the precise definitions of the carotid segments investigated, the use of mean or maximal IMT, the measurement of near and far wall or only far wall IMT, and whether IMT was measured only on 1 side or on both sides [2]. The technique we used allows to standardize the measurement process and then to improve the reproducibility of the results.

Our study results are concordant with those found by Bobbert et al. [38], but one of the points of major originality of our manuscript is the use of a completely automated cIMT measurement using AtheroEdge. Our methodology is validated in previous publication that demonstrated an excellent reproducibility of the software. Therefore the association we found between the cIMT and HbA1c can be considered further strengthened by the methodology for the IMT quantification

We did not find any statistically significant correlation between the plaques score and the HbA1c (rho value = 0.0789); this data are concordant with the literature. In the recently published study by Herder et al. [39] in a population of 2741 patients, it was found that the diabetes was predictor for IMT and IMT progression, whereas the total cholesterol, smoking, and systolic blood pressure were stronger long-term predictors of carotid plaque area and carotid plaque area progression than for IMT and IMT progression.
In this study there are some limitations: the first one is that we did not consider in our analysis the diabetes duration. This fact may represent a bias because some authors consider that the diabetes duration is an important factor impacting on carotid thickening [40-42].

In conclusion, results of our study confirm that the automated cIMT values and the levels of HbA1c are correlated whereas the plaque score does not show any statistically significant correlation.
References

Figure Legends

Figure 1

A) Original and cropped B-Mode image (right carotid artery in the common tract). B) Line segments automatically traced by AtheroEdge. C) Automated tracing of the ADf.

Figure 2

Automated AtheroEdge LI/MA tracings of the far distal wall.

Figure 3

Correlation plots between the AtheroEdge CIMT values (panel A) and Plaque Score (panel B) versus the percent value of HbA1c.
Table 1. Demographics and clinical characteristics of the patients. The rightmost column reports the p value for the normality test (Kolmogorov-Smirnov).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>K-S test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>62.3%</td>
<td>NC</td>
</tr>
<tr>
<td>Age</td>
<td>69 ± 11</td>
<td>0.018</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>17.4%</td>
<td>NC</td>
</tr>
<tr>
<td>Hypertension</td>
<td>56.3%</td>
<td>NC</td>
</tr>
<tr>
<td>Albumine</td>
<td>4.14 ± 0.37</td>
<td>0.001*</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.58 ± 2.09</td>
<td>0.001*</td>
</tr>
<tr>
<td>Haemoglobin A1c</td>
<td>5.6 ± 1.0 %</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>(37 ± 13 mmol/mol)</td>
<td></td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>109 ± 31</td>
<td>0.001*</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>182 ± 38</td>
<td>0.604</td>
</tr>
<tr>
<td>Low density lipoprotein cholesterol (mg/dL)</td>
<td>105 ± 34</td>
<td>0.556</td>
</tr>
<tr>
<td>High density lipoprotein cholesterol (mg/dL)</td>
<td>53 ± 15</td>
<td>0.029</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>122 ± 70</td>
<td>0.001*</td>
</tr>
</tbody>
</table>