A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper. It is assumed that the time-varying parameters have stochastic nature and that the system’s matrices are bounded but otherwise arbitrary nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted parameter trajectories (‘scenarios’) are considered. This problem is convex and its solution is a priori guaranteed to be probabilistically robust, up to a user-defined probability level p. The p level is linked to M by an analytic relationship, which establishes a tradeoff between computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features of the approach are illustrated by a numerical example.

Stochastic model predictive control of LPV systems via scenario optimization / Calafiore, Giuseppe Carlo; Lorenzo, Fagiano. - In: AUTOMATICA. - ISSN 0005-1098. - STAMPA. - 49:6(2013), pp. 1861-1866. [10.1016/j.automatica.2013.02.060]

Stochastic model predictive control of LPV systems via scenario optimization

CALAFIORE, Giuseppe Carlo;
2013

Abstract

A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper. It is assumed that the time-varying parameters have stochastic nature and that the system’s matrices are bounded but otherwise arbitrary nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted parameter trajectories (‘scenarios’) are considered. This problem is convex and its solution is a priori guaranteed to be probabilistically robust, up to a user-defined probability level p. The p level is linked to M by an analytic relationship, which establishes a tradeoff between computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features of the approach are illustrated by a numerical example.
File in questo prodotto:
File Dimensione Formato  
RMPC_LPV_final.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 290.05 kB
Formato Adobe PDF
290.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2507857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo