Coupled amplitude delay lock loops (CADLL) is a recently proposed multipath estimation and mitigation technique based on joint estimation of line-of-sight (LOS) and multipath signal amplitude, code phase, and carrier phase. The CADLL performance is evaluated against two widely known multipath mitigation methods: the high-resolution correlator (HRC), representative of the correlators combination methods, and the multipath mitigation technique (MMT), representative of multipath estimation methods. Multiple tests emulating various scenarios are performed to demonstrate that CADLL always generates better results than the other two methods. Additionally, CADLL has better noise performance, can estimate multipath signals using shorter integration time, and is capable of tracking dynamic multipath signals. Simulation tests using a statistical urban multipath signal model prove that CADLL is effective in estimating and mitigating multipath in severe multipath environments. These simulation results are further validated using satellite signals generated by Spirent Global Navigation Satellite System (GNSS)

Comparative Studies of GPS Multipath Mitigation Methods Performance / Chen, Xin; Dovis, Fabio; Peng, Senlin; Morton, Yu. - In: IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. - ISSN 0018-9251. - ELETTRONICO. - 49:3(2013), pp. 1555-1568. [10.1109/TAES.2013.6558004]

Comparative Studies of GPS Multipath Mitigation Methods Performance

DOVIS, Fabio;
2013

Abstract

Coupled amplitude delay lock loops (CADLL) is a recently proposed multipath estimation and mitigation technique based on joint estimation of line-of-sight (LOS) and multipath signal amplitude, code phase, and carrier phase. The CADLL performance is evaluated against two widely known multipath mitigation methods: the high-resolution correlator (HRC), representative of the correlators combination methods, and the multipath mitigation technique (MMT), representative of multipath estimation methods. Multiple tests emulating various scenarios are performed to demonstrate that CADLL always generates better results than the other two methods. Additionally, CADLL has better noise performance, can estimate multipath signals using shorter integration time, and is capable of tracking dynamic multipath signals. Simulation tests using a statistical urban multipath signal model prove that CADLL is effective in estimating and mitigating multipath in severe multipath environments. These simulation results are further validated using satellite signals generated by Spirent Global Navigation Satellite System (GNSS)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2510096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo