A solid state electronic nanodevice is an intrinsically open quantum system, exchanging both energy with the host material and carriers with connected reservoirs. Its out-of-equilibrium behavior is determined by a nontrivial interplay between electronic dissipation and decoherence induced by inelastic processes within the device, and the coupling of the latter to metallic electrodes. We propose a unified description, based on the density matrix formalism, that accounts for both these aspects, enabling us to predict various steady-state as well as ultrafast nonequilibrium phenomena, nowadays experimentally accessible. More specifically, we derive a generalized density-matrix equation, particularly suitable for the design and optimization of a wide class of electronic and optoelectronic quantum devices. The power and flexibility of this approach is demonstrated with the application to a photoexcited triple-barrier nanodevice.

Interplay between energy dissipation and reservoir-induced thermalization in nonequilibrium quantum nanodevices / Dolcini, Fabrizio; Iotti, Rita Claudia; Rossi, Fausto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 88:11(2013), pp. 115421-1-115421-7. [10.1103/PhysRevB.88.115421]

Interplay between energy dissipation and reservoir-induced thermalization in nonequilibrium quantum nanodevices

DOLCINI, FABRIZIO;IOTTI, Rita Claudia;ROSSI, FAUSTO
2013

Abstract

A solid state electronic nanodevice is an intrinsically open quantum system, exchanging both energy with the host material and carriers with connected reservoirs. Its out-of-equilibrium behavior is determined by a nontrivial interplay between electronic dissipation and decoherence induced by inelastic processes within the device, and the coupling of the latter to metallic electrodes. We propose a unified description, based on the density matrix formalism, that accounts for both these aspects, enabling us to predict various steady-state as well as ultrafast nonequilibrium phenomena, nowadays experimentally accessible. More specifically, we derive a generalized density-matrix equation, particularly suitable for the design and optimization of a wide class of electronic and optoelectronic quantum devices. The power and flexibility of this approach is demonstrated with the application to a photoexcited triple-barrier nanodevice.
File in questo prodotto:
File Dimensione Formato  
Dolcini-Iotti-Rossi_PRB_88_115421_2013.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 237.45 kB
Formato Adobe PDF
237.45 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2514329
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo