When subjected to events such as earthquakes, engineering structures typically exhibit a nonlinear and hysteretic behaviour with stiffness and strength degradations. Though a reliable evaluation of safety conditions should take into account the nonlinear dynamic and evolutionary nature of the structural response, the experimental identification of a nonlinear behaviour under dynamic and seismic loading is, to date, an open problem. The present research aims at evaluating the potential of different restoring force models for simulating the seismic response of hysteretic structural systems, with special emphasis on the two main problems encountered when applying this approach to full-scale structures under intense excitation: (a) a markedly time-dependent behaviour; (b) need to compare among different restoring force models, either expressed in a parametric or polynomial form. In particular, polynomial models will be formulated both in terms of restoring force and its derivative, in order to present a comprehensive discussion of different strategies. The nonlinear identification technique employed in this paper is required to account for a time-dependent behaviour. In fact, in presence of degradation or any other time-varying characteristics, instantaneous identification certainly constitutes an enhancement of the classical restoring force based approach, and may as well provide checks on the consistency of the assumed models.

Comparison of restoring force models for the identification of structures with hysteresis and degradation / Ceravolo, Rosario; Erlicher, S.; ZANOTTI FRAGONARA, Luca. - In: JOURNAL OF SOUND AND VIBRATION. - ISSN 0022-460X. - STAMPA. - 332:26(2013), pp. 6982-6999. [10.1016/j.jsv.2013.08.019]

Comparison of restoring force models for the identification of structures with hysteresis and degradation

CERAVOLO, Rosario;ZANOTTI FRAGONARA, LUCA
2013

Abstract

When subjected to events such as earthquakes, engineering structures typically exhibit a nonlinear and hysteretic behaviour with stiffness and strength degradations. Though a reliable evaluation of safety conditions should take into account the nonlinear dynamic and evolutionary nature of the structural response, the experimental identification of a nonlinear behaviour under dynamic and seismic loading is, to date, an open problem. The present research aims at evaluating the potential of different restoring force models for simulating the seismic response of hysteretic structural systems, with special emphasis on the two main problems encountered when applying this approach to full-scale structures under intense excitation: (a) a markedly time-dependent behaviour; (b) need to compare among different restoring force models, either expressed in a parametric or polynomial form. In particular, polynomial models will be formulated both in terms of restoring force and its derivative, in order to present a comprehensive discussion of different strategies. The nonlinear identification technique employed in this paper is required to account for a time-dependent behaviour. In fact, in presence of degradation or any other time-varying characteristics, instantaneous identification certainly constitutes an enhancement of the classical restoring force based approach, and may as well provide checks on the consistency of the assumed models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2516307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo