The objective of the present paper is to address the identification of a strongly nonlinear satellite structure. To this end, two nonlinear subspace identification methods formulated in the time and frequency domains are exploited, referred to as the TNSI and FNSI methods, respectively. The modal parameters of the underlying linear structure and the coefficients of the nonlinearities will be estimated by these two approaches based on periodic random measurements. Their respective merits will also be discussed in terms of both accuracy and computational efficiency and the use of stabilisation diagrams in nonlinear system identification will be introduced. The application of interest is the SmallSat spacecraft developed by EADS-Astrium, which possesses an impact-type nonlinear device consisting of eight mechanical stops limiting the motion of an inertia wheel mounted on an elastomeric interface. This application is challenging for several reasons including the non-smooth nature of the nonlinearities, high modal density and high non-proportional damping.

Subspace-based identification of a nonlinear spacecraft in the time and frequency domains / J. P., Noël; Marchesiello, Stefano; G., Kerschen. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - STAMPA. - 43:(2014), pp. 217-236. [10.1016/j.ymssp.2013.10.016]

Subspace-based identification of a nonlinear spacecraft in the time and frequency domains

MARCHESIELLO, STEFANO;
2014

Abstract

The objective of the present paper is to address the identification of a strongly nonlinear satellite structure. To this end, two nonlinear subspace identification methods formulated in the time and frequency domains are exploited, referred to as the TNSI and FNSI methods, respectively. The modal parameters of the underlying linear structure and the coefficients of the nonlinearities will be estimated by these two approaches based on periodic random measurements. Their respective merits will also be discussed in terms of both accuracy and computational efficiency and the use of stabilisation diagrams in nonlinear system identification will be introduced. The application of interest is the SmallSat spacecraft developed by EADS-Astrium, which possesses an impact-type nonlinear device consisting of eight mechanical stops limiting the motion of an inertia wheel mounted on an elastomeric interface. This application is challenging for several reasons including the non-smooth nature of the nonlinearities, high modal density and high non-proportional damping.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2521102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo