The territory of Italy is seriously afflicted by hydrological risk, with 82% of its area affected by this phenomenon. In recent years, technologies and advanced research have played an important role in realizing complex automatic systems devoted to landslide monitoring and to alerting the population. Sometimes, the cost of these systems (communications network, sensors, software, technologies) prevents their use, and in particular the cost of sensors has a large impact on the final investment. For example, geodetic GNSS receivers are usually employed to conduct landslide monitoring, but they are costly. Nowadays, new technologies make it possible to use small and efficient low cost single frequency GPS receivers, which are able to achieve a centimetrical or better level of accuracy, in static positioning. The rapid development and diffusion of the GNSS network to provide a positioning service has made it possible to use single frequency receivers, thanks to the use of virtual RINEX. This product is generated by a network of permanent stations. In this research, the actual performance of a mass market GPS receiver was tested, with the purpose of verifying if these sensors can be used for landslide monitoring. A special slide was realized, in order to conduct a dedicated test of the detection of displacements. Tests were carried out considering two factors: acquisition time and distance from the Virtual Station. The accuracy and precision of movement determination were evaluated and compared, for each test, considering the different factors. The tests and results are described in this contribution

MONITORING OF LANDSLIDES WITH MASS MARKET GPS: AN ALTERNATIVE LOW COST SOLUTION / Cina, Alberto; Piras, Marco; H. I., Bendea. - ELETTRONICO. - XL-5/W3-2013:(2014), pp. 131-137. (Intervento presentato al convegno The Role of Geomatics in Hydrogeological Risk tenutosi a Padova nel 27–28 February 2013) [10.5194/isprsarchives-XL-5-W3-131-2013].

MONITORING OF LANDSLIDES WITH MASS MARKET GPS: AN ALTERNATIVE LOW COST SOLUTION

CINA, Alberto;PIRAS, MARCO;
2014

Abstract

The territory of Italy is seriously afflicted by hydrological risk, with 82% of its area affected by this phenomenon. In recent years, technologies and advanced research have played an important role in realizing complex automatic systems devoted to landslide monitoring and to alerting the population. Sometimes, the cost of these systems (communications network, sensors, software, technologies) prevents their use, and in particular the cost of sensors has a large impact on the final investment. For example, geodetic GNSS receivers are usually employed to conduct landslide monitoring, but they are costly. Nowadays, new technologies make it possible to use small and efficient low cost single frequency GPS receivers, which are able to achieve a centimetrical or better level of accuracy, in static positioning. The rapid development and diffusion of the GNSS network to provide a positioning service has made it possible to use single frequency receivers, thanks to the use of virtual RINEX. This product is generated by a network of permanent stations. In this research, the actual performance of a mass market GPS receiver was tested, with the purpose of verifying if these sensors can be used for landslide monitoring. A special slide was realized, in order to conduct a dedicated test of the detection of displacements. Tests were carried out considering two factors: acquisition time and distance from the Virtual Station. The accuracy and precision of movement determination were evaluated and compared, for each test, considering the different factors. The tests and results are described in this contribution
File in questo prodotto:
File Dimensione Formato  
isprsarchives-XL-5-W3-131-2013.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2525506
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo