In the aeronautics industry, the propulsion systems stand among the most advanced and critical components. Over the last 50 years, gas turbine aeroengines were subjected to intensive research to increase efficiency and reduce weight, noise and harmful emissions. Together with design optimization, breakthrough in materials science for structural applications triggered the development of the most advanced gas turbine engines. For low temperatures, basically ahead of the combustion section, lightweight Ti alloys are preferred for their good mechanical properties. For high temperatures instead, Ni-based superalloys exhibit outstanding properties up to very high temperatures despite a rather high material’s density. Research have focused on enhancing to the maximum the potential of materials in gas turbine engines. According to the application, the components experience various mechanical and environmental constraints. Special designs, manufacturing process, material compositions and protective coatings have been developed to push the limits of advanced materials. Nowadays, the attention is focused on innovative materials to replace the existing Ti and Ni based alloys leading to substantial benefits. Light weight composite materials in particular were found very attractive to replace some components’ Ti alloys. At higher temperatures, it is of great interest to replace Ni-based superalloys by materials with lower density and/or higher temperatures applications, which in turn would lead to substantial weight reduction and increase efficiency. At the highest temperatures range, in particular in the combustion chamber and high pressure turbine sections, ceramic based materials offer promising balance of properties. Research are dedicated to overcome the drawbacks of ceramics for such structural applications, and in particular their brittle fracture behavior, by addition of reinforcing fibers. At lower temperatures range, TiAl based intermetallics emerged as very promising materials at half the density of Ni-based superalloys. Significant weight reduction could be achieved by the introduction of TiAl based alloys for rotating components of the compressor and low pressure turbine. 2nd generation γ-TiAl alloys were lately introduced in GE’s GEnx and CFM’s LEAP engines. The present work concerns the fabrication by the additive manufacturing technique Electron Beam Melting of 3rd generation γ-TiAl alloys for high temperatures application in gas turbine aeroengines. EBM, building parts layer by layer according to CAD, offers many advantages compared to other manufacturing processes like casting and forging. Reported by Avio, 2nd generation γ-TiAl alloys have been successfully fabricated by EBM. To increase the material’s potential, the production of 3rd generation γ-TiAl alloys Ti-(45-46)Al-2Cr-8Nb was therefore studied. The optimization of the EBM parameters led to high homogeneity and very low post-processing residual porosity ≤ 1%. The fine equiaxed microstructure after EBM could be tailored towards the desired mechanical properties by simple heat treatment, from equiaxed to duplex to fully lamellar. In particular, a duplex microstructure composed by about 80 % lamellar grains pinned at grain boundaries by fine equiaxed grains was obtained after heat treatment slightly over the α transus temperature. The study showed that addition of a higher amount of Nb significantly increased the oxidation resistance of the material, thus increasing the application temperature range of these γ-TiAl alloys.

Innovative materials for high temperature structural applications: 3rd Generation γ-TiAl fabricated by Electron Beam Melting / Terner, Mathieu. - (2014). [10.6092/polito/porto/2527509]

Innovative materials for high temperature structural applications: 3rd Generation γ-TiAl fabricated by Electron Beam Melting

TERNER, MATHIEU
2014

Abstract

In the aeronautics industry, the propulsion systems stand among the most advanced and critical components. Over the last 50 years, gas turbine aeroengines were subjected to intensive research to increase efficiency and reduce weight, noise and harmful emissions. Together with design optimization, breakthrough in materials science for structural applications triggered the development of the most advanced gas turbine engines. For low temperatures, basically ahead of the combustion section, lightweight Ti alloys are preferred for their good mechanical properties. For high temperatures instead, Ni-based superalloys exhibit outstanding properties up to very high temperatures despite a rather high material’s density. Research have focused on enhancing to the maximum the potential of materials in gas turbine engines. According to the application, the components experience various mechanical and environmental constraints. Special designs, manufacturing process, material compositions and protective coatings have been developed to push the limits of advanced materials. Nowadays, the attention is focused on innovative materials to replace the existing Ti and Ni based alloys leading to substantial benefits. Light weight composite materials in particular were found very attractive to replace some components’ Ti alloys. At higher temperatures, it is of great interest to replace Ni-based superalloys by materials with lower density and/or higher temperatures applications, which in turn would lead to substantial weight reduction and increase efficiency. At the highest temperatures range, in particular in the combustion chamber and high pressure turbine sections, ceramic based materials offer promising balance of properties. Research are dedicated to overcome the drawbacks of ceramics for such structural applications, and in particular their brittle fracture behavior, by addition of reinforcing fibers. At lower temperatures range, TiAl based intermetallics emerged as very promising materials at half the density of Ni-based superalloys. Significant weight reduction could be achieved by the introduction of TiAl based alloys for rotating components of the compressor and low pressure turbine. 2nd generation γ-TiAl alloys were lately introduced in GE’s GEnx and CFM’s LEAP engines. The present work concerns the fabrication by the additive manufacturing technique Electron Beam Melting of 3rd generation γ-TiAl alloys for high temperatures application in gas turbine aeroengines. EBM, building parts layer by layer according to CAD, offers many advantages compared to other manufacturing processes like casting and forging. Reported by Avio, 2nd generation γ-TiAl alloys have been successfully fabricated by EBM. To increase the material’s potential, the production of 3rd generation γ-TiAl alloys Ti-(45-46)Al-2Cr-8Nb was therefore studied. The optimization of the EBM parameters led to high homogeneity and very low post-processing residual porosity ≤ 1%. The fine equiaxed microstructure after EBM could be tailored towards the desired mechanical properties by simple heat treatment, from equiaxed to duplex to fully lamellar. In particular, a duplex microstructure composed by about 80 % lamellar grains pinned at grain boundaries by fine equiaxed grains was obtained after heat treatment slightly over the α transus temperature. The study showed that addition of a higher amount of Nb significantly increased the oxidation resistance of the material, thus increasing the application temperature range of these γ-TiAl alloys.
2014
File in questo prodotto:
File Dimensione Formato  
PhD Manuscript Terner U-Gov.pdf

Open Access dal 01/02/2020

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2527509
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo