PEM Fuel Cells are expected to gradually substitute internal combustion engines as electrical and co-generation power sources thanks to high efficiency, low operating temperature, fast startup time and favourable power-to-weight ratio. However, while PEMFCs have achieved significant progresses in the last decade, their short lifetime and high cost still continue to impede large-scale commercialization. The first subject of the present work had been the study of the PEM fuel cells degradation mechanisms with the aim of: a) find out the most relevant phenomena concerning the fuel cell lifetime, b) testing some methods able to promptly detect the degradation mechanisms and, mostly, c) find out the mitigation strategies able to increase the fuel cells lifetime. At the end of the research three mitigation strategies had been developed and tested: cell voltage monitoring, the current modulation and the stack shunt. According to the tests results all these mitigation strategies, if adopted all together, can effectively led to doubling the fuel cells lifetime. In parallel to the fuel cell lifetime increase, a deep investigation on system components integration had been conducted. Following this principle, the system cost has been considerably reduced mostly thanks to the DC-DC converter integration with the stack and the coolant circuit simplification. The prototypes realized during this work has been taken as example for the production of new fuel cell power systems with increased lifetime at lower cost

Study on the key factors allowing the PEM fuel cell systems large commercialization: fuel cell degradation and components integration / Bona, Denis. - (2014). [10.6092/polito/porto/2537914]

Study on the key factors allowing the PEM fuel cell systems large commercialization: fuel cell degradation and components integration

BONA, DENIS
2014

Abstract

PEM Fuel Cells are expected to gradually substitute internal combustion engines as electrical and co-generation power sources thanks to high efficiency, low operating temperature, fast startup time and favourable power-to-weight ratio. However, while PEMFCs have achieved significant progresses in the last decade, their short lifetime and high cost still continue to impede large-scale commercialization. The first subject of the present work had been the study of the PEM fuel cells degradation mechanisms with the aim of: a) find out the most relevant phenomena concerning the fuel cell lifetime, b) testing some methods able to promptly detect the degradation mechanisms and, mostly, c) find out the mitigation strategies able to increase the fuel cells lifetime. At the end of the research three mitigation strategies had been developed and tested: cell voltage monitoring, the current modulation and the stack shunt. According to the tests results all these mitigation strategies, if adopted all together, can effectively led to doubling the fuel cells lifetime. In parallel to the fuel cell lifetime increase, a deep investigation on system components integration had been conducted. Following this principle, the system cost has been considerably reduced mostly thanks to the DC-DC converter integration with the stack and the coolant circuit simplification. The prototypes realized during this work has been taken as example for the production of new fuel cell power systems with increased lifetime at lower cost
2014
File in questo prodotto:
File Dimensione Formato  
PhD Thesis - Denis Bona.pdf

Open Access dal 22/02/2015

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.99 MB
Formato Adobe PDF
4.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2537914
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo