[Proceeding] Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

Original Citation:

Availability:
This version is available at: http://porto.polito.it/2543105/ since: May 2014

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved"), as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

(Article begins on next page)
Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

(AbSTRACT ID#: 366661, Session: 01D00 Mathematical Modeling of Transport Processes)

Matteo Icardi¹, Gianluca Boccardo², Daniele L. Marchisio², Tiziana Tosco² and Rajandrea Sethi²

¹ KAUST, Saudi Arabia
² Politecnico di Torino, Italy

Keywords: Chemical Reactions, Computational Methods, blender, computational fluid dynamics and porous media

In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore-scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. Realistic three-dimensional porous media are created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. An example of such packings, obtained with the open-source code Blender, is reported in the figure on the left. Great attention is paid to numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme, and are often overlooked. Mesh generation, fluid flow and solute transport are simulated with the open-source computational fluid dynamics code openFoam. The calculations performed include steady-state flow simulations and transient solute dispersion simulations, as clearly depicted in the figure below.

Results are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed.