This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.

A virtual experiment for the detection of specific features in the frequency response of a coupled nonlinear and linear oscillator / Gianluca, Gatti; Marchesiello, Stefano; Michael J., Brennan. - 1:(2014), pp. 1-7. (Intervento presentato al convegno IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS tenutosi a Porto (Portugal) nel 30 June - 2 July 2014).

A virtual experiment for the detection of specific features in the frequency response of a coupled nonlinear and linear oscillator

MARCHESIELLO, STEFANO;
2014

Abstract

This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2556536
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo