Clouds and CDNs are systems that tend to separate the content being requested by users from the physical servers capable of serving it. From the network point of view, monitoring and optimizing performance for the traffic they generate are challenging tasks, given that the same resource can be located in multiple places, which can, in turn, change at any time. The first step in understanding cloud and CDN systems is thus the engineering of a monitoring platform. In this paper, we propose a novel solution that combines passive and active measurements and whose workflow has been tailored to specifically characterize the traffic generated by cloud and CDN infrastructures. We validate our platform by performing a longitudinal characterization of the very well known cloud and CDN infrastructure provider Amazon Web Services (AWS). By observing the traffic generated by more than 50 000 Internet users of an Italian Internet Service Provider, we explore the EC2, S3, and CloudFront AWS services, unveiling their infrastructure, the pervasiveness of web services they host, and their traffic allocation policies as seen from our vantage points. Most importantly, we observe their evolution over a two-year-long period. The solution provided in this paper can be of interest for the following: 1) developers aiming at building measurement tools for cloud infrastructure providers; 2) developers interested in failure and anomaly detection systems; and 3) third-party service-level agreement certificators who can design systems to independently monitor performance. Finally, we believe that the results about AWS presented in this paper are interest

A Distributed Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon AWS / Ignacio, Bermudez; Traverso, Stefano; Munafo', MAURIZIO MATTEO; Mellia, Marco. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 11:4(2014), pp. 516-529. [10.1109/TNSM.2014.2362357]

A Distributed Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon AWS

TRAVERSO, STEFANO;MUNAFO', MAURIZIO MATTEO;MELLIA, Marco
2014

Abstract

Clouds and CDNs are systems that tend to separate the content being requested by users from the physical servers capable of serving it. From the network point of view, monitoring and optimizing performance for the traffic they generate are challenging tasks, given that the same resource can be located in multiple places, which can, in turn, change at any time. The first step in understanding cloud and CDN systems is thus the engineering of a monitoring platform. In this paper, we propose a novel solution that combines passive and active measurements and whose workflow has been tailored to specifically characterize the traffic generated by cloud and CDN infrastructures. We validate our platform by performing a longitudinal characterization of the very well known cloud and CDN infrastructure provider Amazon Web Services (AWS). By observing the traffic generated by more than 50 000 Internet users of an Italian Internet Service Provider, we explore the EC2, S3, and CloudFront AWS services, unveiling their infrastructure, the pervasiveness of web services they host, and their traffic allocation policies as seen from our vantage points. Most importantly, we observe their evolution over a two-year-long period. The solution provided in this paper can be of interest for the following: 1) developers aiming at building measurement tools for cloud infrastructure providers; 2) developers interested in failure and anomaly detection systems; and 3) third-party service-level agreement certificators who can design systems to independently monitor performance. Finally, we believe that the results about AWS presented in this paper are interest
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2603561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo