The use of small-satellites as platforms for fast-access to space with relatively low cost has increased in the last years. In particular, many universities in the world have now permanent hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as for example technology demonstration, science application, and Earth observation. This new objectives require the development of adequate technology to increase CubeSat performances. Furthermore, it is necessary to improve mission reliability. The research aims at studying methods for dependability analysis conducted by small satellites. The attention is focused on the reliability, as main attribute of the dependability, of CubeSats and CubeSats missions. The work has been structured in three main blocks. The first part of the work has been dedicated to the general study of dependability from the theoretical point of view. It has been studied the dependability attributes, the threads that can affect the dependability of a system, the techniques that are used to mitigate the threads, parameters to measure dependability, and models and techniques for dependability modelling. The second part contains a study of failures occurred during CubeSats missions in the last ten years and their observed reliability evaluation have been conducted. In order to perform this analysis a database has been created. This database contents information of all CubeSats launched until December 2013. The information has been gathered from public sources (i.e. CubeSat projects webs, publications on international journals, etc.) and contains general information (e.g. launch date, objectives) and data regarding possible failures. All this information is then used to conduct a quantitative reliability analysis of these missions by means of non-parametric and parametric methods, demonstrating that these failures follow a Weibull distribution. In the third section different methods, based on the concept of fault prevention, removal and tolerance, have been proposed in order to evaluate and increase dependability, and concretely reliability, of CubeSats and their missions. Concretely, three different methods have been developed: 1) after an analysis of the activities conducted by CubeSat’s developers during whole CubeSat life-cycle, it has been proposed a wide range of activities to be conducted during all phases of satellite’s life-cycle to increase mission rate of success, 2) increase reliability through CubeSats verification, mainly tailoring international ECSS standards to be applied to a CubeSat project, 3) reliability rising at mission level by means of implementing distributed mission architectures instead of classical monolithic architectures. All these methods developed in the present PhD research have been applied to a real space projects under development at Politecnico di Torino within e-st@r program. The e-st@r program is being conducted by the CubeSat Team of the Mechanical and AeroSpace Engineering Department. Concretely, e-st@r-I, e-st@r-II, and 3STAR CubeSats have been used as test cases for the proposed methods. Moreover, part of the present research has been conducted within an internship at the European Space research and Technology Centre (ESTEC) of the European Space Agency (ESA) at Noordwijk (The Netherlands). In particular, the partially realisation of the CubeSats database, the analysis of activities conducted by CubeSat developers and statement of activities for mission rate of success increase have been conducted during the internship.

Methods for dependability analysis of small satellite missions / OBIOLS RABASA, Gerard. - (2015). [10.6092/polito/porto/2611554]

Methods for dependability analysis of small satellite missions

OBIOLS RABASA, GERARD
2015

Abstract

The use of small-satellites as platforms for fast-access to space with relatively low cost has increased in the last years. In particular, many universities in the world have now permanent hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as for example technology demonstration, science application, and Earth observation. This new objectives require the development of adequate technology to increase CubeSat performances. Furthermore, it is necessary to improve mission reliability. The research aims at studying methods for dependability analysis conducted by small satellites. The attention is focused on the reliability, as main attribute of the dependability, of CubeSats and CubeSats missions. The work has been structured in three main blocks. The first part of the work has been dedicated to the general study of dependability from the theoretical point of view. It has been studied the dependability attributes, the threads that can affect the dependability of a system, the techniques that are used to mitigate the threads, parameters to measure dependability, and models and techniques for dependability modelling. The second part contains a study of failures occurred during CubeSats missions in the last ten years and their observed reliability evaluation have been conducted. In order to perform this analysis a database has been created. This database contents information of all CubeSats launched until December 2013. The information has been gathered from public sources (i.e. CubeSat projects webs, publications on international journals, etc.) and contains general information (e.g. launch date, objectives) and data regarding possible failures. All this information is then used to conduct a quantitative reliability analysis of these missions by means of non-parametric and parametric methods, demonstrating that these failures follow a Weibull distribution. In the third section different methods, based on the concept of fault prevention, removal and tolerance, have been proposed in order to evaluate and increase dependability, and concretely reliability, of CubeSats and their missions. Concretely, three different methods have been developed: 1) after an analysis of the activities conducted by CubeSat’s developers during whole CubeSat life-cycle, it has been proposed a wide range of activities to be conducted during all phases of satellite’s life-cycle to increase mission rate of success, 2) increase reliability through CubeSats verification, mainly tailoring international ECSS standards to be applied to a CubeSat project, 3) reliability rising at mission level by means of implementing distributed mission architectures instead of classical monolithic architectures. All these methods developed in the present PhD research have been applied to a real space projects under development at Politecnico di Torino within e-st@r program. The e-st@r program is being conducted by the CubeSat Team of the Mechanical and AeroSpace Engineering Department. Concretely, e-st@r-I, e-st@r-II, and 3STAR CubeSats have been used as test cases for the proposed methods. Moreover, part of the present research has been conducted within an internship at the European Space research and Technology Centre (ESTEC) of the European Space Agency (ESA) at Noordwijk (The Netherlands). In particular, the partially realisation of the CubeSats database, the analysis of activities conducted by CubeSat developers and statement of activities for mission rate of success increase have been conducted during the internship.
2015
File in questo prodotto:
File Dimensione Formato  
OBIOLS-RABASA_Methods_for_dependability_analysis_of_small_satellite_missions.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2611554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo