A class of fiber-reinforced concrete, commonly called strain-hardening cementitious composite (SHCC), can show very ductile behavior under tension. In the post-cracking stage, several cracks develop before complete failure, which occurs when tensile strains finally localize in one of the formed cracks. To predict the mechanical performances of monofiber SHCC, a cohesive model has been proposed. Such a model is used herein to tailor hybrid SHCC, made with long and short fibers. By combining uniaxial tensile tests and the theoretical results of the model, the critical value of the fibervolume fraction can be evaluated. It should be considered as the minimum amount of long fibers that can lead to the formation of multiple cracking and strain hardening under tensile actions. The aim of the present research is to reduce such volume as much as possible, to improve the workability, and reduce the final cost of SHCC.

Tailoring Hybrid Strain-Hardening Cementitious Composites / Fantilli, ALESSANDRO PASQUALE; Mihashi, Hirozo; Nishiwaki, Tomoya. - In: ACI MATERIALS JOURNAL. - ISSN 0889-325X. - 111:2(2014), pp. 211-218. [10.14359/51686563]

Tailoring Hybrid Strain-Hardening Cementitious Composites

FANTILLI, ALESSANDRO PASQUALE;
2014

Abstract

A class of fiber-reinforced concrete, commonly called strain-hardening cementitious composite (SHCC), can show very ductile behavior under tension. In the post-cracking stage, several cracks develop before complete failure, which occurs when tensile strains finally localize in one of the formed cracks. To predict the mechanical performances of monofiber SHCC, a cohesive model has been proposed. Such a model is used herein to tailor hybrid SHCC, made with long and short fibers. By combining uniaxial tensile tests and the theoretical results of the model, the critical value of the fibervolume fraction can be evaluated. It should be considered as the minimum amount of long fibers that can lead to the formation of multiple cracking and strain hardening under tensile actions. The aim of the present research is to reduce such volume as much as possible, to improve the workability, and reduce the final cost of SHCC.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2615667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo