The study concerns part of the plain sector of Aosta Valley (NW Italy). The investigated area is located between the cities of Sarre-Gressan and Pollein-Saint Christophe and is characterized by the presence of hexavalent chromium in the main shallow unconfined aquifer. The pollution is probably related to the negative environmental effects induced by the industrial steel production that since 1915 is present over the area. Since 1990 the industrial area was subjected to a number of direct investigations aimed to assess the contamination intensity. A preliminary remediation activity has been developed in last decades but the contaminants have been still observed in the groundwater monitoring network. This study highlights the set-up of a groundwater conceptual and numerical model of the shallow aquifer aimed to better understand and analyze the transport dynamics of hexavalent chromium in the local aquifer. The simulation is performed using the specific finite element software Feflow for groundwater flow and mass transport modeling. The hydrogeological setting of this area is related to the different sedimentary glacial, lacustrine and fluvial processes which characterized the bottom of the Aosta valley during the Quaternary. The shallow 80m-width aquifer is constituted by sandy to gravelly deposits and presents rare silty lens while its bottom is characterized by a decametric lacustrine silty level. The main aims of the numerical model are to give a more unequivocal explanation of the origin of the contamination and to support the predictive analyses in order to design an efficient site remediation for soil and groundwater. This represents a fundamental task in order to preserve the safety of the public water uses supplied by the aquifer. The preliminary hypothesis about the source of contaminations are still uncertain and referred to different scenarios that have to be further investigated by comparing monitoring data and transient flow simulation conditions.

Conceptual and numerical modeling of the Aosta plain: a tool for Groundwater remediation and management / LO RUSSO, Stefano; CERINO ABDIN, Elena; Taddia, Glenda; DE MAIO, Marina. - In: RENDICONTI ONLINE DELLA SOCIETÀ GEOLOGICA ITALIANA. - ISSN 2035-8008. - ELETTRONICO. - 39:(2016), pp. 356-356. (Intervento presentato al convegno THE INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS - AQUA 2015 - 42nd IAH Congress - ROME Sapienza University of Rome - 13/18 September 2015 tenutosi a Roma (Italy) nel 13 - 18 september 2015) [10.3301/ROL.2016.63].

Conceptual and numerical modeling of the Aosta plain: a tool for Groundwater remediation and management.

LO RUSSO, STEFANO;CERINO ABDIN, ELENA;TADDIA, GLENDA;DE MAIO, MARINA
2016

Abstract

The study concerns part of the plain sector of Aosta Valley (NW Italy). The investigated area is located between the cities of Sarre-Gressan and Pollein-Saint Christophe and is characterized by the presence of hexavalent chromium in the main shallow unconfined aquifer. The pollution is probably related to the negative environmental effects induced by the industrial steel production that since 1915 is present over the area. Since 1990 the industrial area was subjected to a number of direct investigations aimed to assess the contamination intensity. A preliminary remediation activity has been developed in last decades but the contaminants have been still observed in the groundwater monitoring network. This study highlights the set-up of a groundwater conceptual and numerical model of the shallow aquifer aimed to better understand and analyze the transport dynamics of hexavalent chromium in the local aquifer. The simulation is performed using the specific finite element software Feflow for groundwater flow and mass transport modeling. The hydrogeological setting of this area is related to the different sedimentary glacial, lacustrine and fluvial processes which characterized the bottom of the Aosta valley during the Quaternary. The shallow 80m-width aquifer is constituted by sandy to gravelly deposits and presents rare silty lens while its bottom is characterized by a decametric lacustrine silty level. The main aims of the numerical model are to give a more unequivocal explanation of the origin of the contamination and to support the predictive analyses in order to design an efficient site remediation for soil and groundwater. This represents a fundamental task in order to preserve the safety of the public water uses supplied by the aquifer. The preliminary hypothesis about the source of contaminations are still uncertain and referred to different scenarios that have to be further investigated by comparing monitoring data and transient flow simulation conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2617635
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo