Posynomials are nonnegative combinations of monomials with possibly fractional and both positive and negative exponents. Posynomial models are widely used in various engineering design endeavors, such as circuits, aerospace and structural design, mainly due to the fact that design problems cast in terms of posynomial objectives and constraints can be solved efficiently by means of a convex optimization technique known as geometric programming (GP). However, while quite a vast literature exists on GP-based design, very few contributions can yet be found on the problem of identifying posynomial models from experimental data. Posynomial identification amounts to determining not only the coefficients of the combination, but also the exponents in the monomials, which renders the identification problem hard. In this paper, we propose an approach to the identification of multivariate posynomial models based on the expansion on a given large-scale basis of monomials. The model is then identified by seeking coefficients of the combination that minimize a mixed objective, composed by a term representing the fitting error and a term inducing sparsity in the representation, which results in a problem formulation of the “square-root LASSO” type, with nonnegativity constraints on the variables. We propose to solve the problem via a sequential coordinate-minimization scheme, which is suitable for large-scale implementations. A numerical example is finally presented, dealing with the identification of a posynomial model for a NACA 4412 airfoil.

Sparse identification of posynomial models / Calafiore, Giuseppe Carlo; El Ghaoui, Laurent M.; Novara, Carlo. - In: AUTOMATICA. - ISSN 0005-1098. - STAMPA. - 59:(2015), pp. 27-34. [10.1016/j.automatica.2015.06.003]

Sparse identification of posynomial models

CALAFIORE, Giuseppe Carlo;NOVARA, Carlo
2015

Abstract

Posynomials are nonnegative combinations of monomials with possibly fractional and both positive and negative exponents. Posynomial models are widely used in various engineering design endeavors, such as circuits, aerospace and structural design, mainly due to the fact that design problems cast in terms of posynomial objectives and constraints can be solved efficiently by means of a convex optimization technique known as geometric programming (GP). However, while quite a vast literature exists on GP-based design, very few contributions can yet be found on the problem of identifying posynomial models from experimental data. Posynomial identification amounts to determining not only the coefficients of the combination, but also the exponents in the monomials, which renders the identification problem hard. In this paper, we propose an approach to the identification of multivariate posynomial models based on the expansion on a given large-scale basis of monomials. The model is then identified by seeking coefficients of the combination that minimize a mixed objective, composed by a term representing the fitting error and a term inducing sparsity in the representation, which results in a problem formulation of the “square-root LASSO” type, with nonnegativity constraints on the variables. We propose to solve the problem via a sequential coordinate-minimization scheme, which is suitable for large-scale implementations. A numerical example is finally presented, dealing with the identification of a posynomial model for a NACA 4412 airfoil.
File in questo prodotto:
File Dimensione Formato  
main_sparse_gpid_FINAL.pdf

Open Access dal 19/06/2017

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 644.94 kB
Formato Adobe PDF
644.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2619525
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo