Solutions for undamped free vibration of beams with solid and thin-walled cross-sections are provided by using refined theories based on displacement variables. In essence, higher-order displacement fields are developed by using the Carrera unified formulation (CUF), and by discretizing the cross-section kinematics with bilinear, cubic and fourth-order Lagrange polynomials. Subsequently, the differential equations of motion and the natural boundary conditions are formulated in terms of fundamental nuclei by using CUF and the strong form of the principle of virtual displacements. The second-order system of ordinary differential equations is then reduced into a classical eigenvalue problem by assuming simply supported boundary conditions. The proposed methodology is extensively assessed for different solid and thin-walled metallic beam structures and the results are compared with those appeared in published literature and also checked by finite element solutions. The research demonstrates that: (i) the innovative 1D closed form CUF represents a reliable and compact method to develop refined beam models with solely displacement variables; (ii) 3D-like numerically exact solutions of complex structures can be obtained with ease; and (iii) the numerical efficiency of the present method is uniquely robust when compared to other methods that provide similar accuracies.

Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables / Dan, M.; Pagani, Alfonso; Carrera, Erasmo. - In: THIN-WALLED STRUCTURES. - ISSN 0263-8231. - STAMPA. - 98:Part B(2016), pp. 478-495. [10.1016/j.tws.2015.10.012]

Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables

PAGANI, ALFONSO;CARRERA, Erasmo
2016

Abstract

Solutions for undamped free vibration of beams with solid and thin-walled cross-sections are provided by using refined theories based on displacement variables. In essence, higher-order displacement fields are developed by using the Carrera unified formulation (CUF), and by discretizing the cross-section kinematics with bilinear, cubic and fourth-order Lagrange polynomials. Subsequently, the differential equations of motion and the natural boundary conditions are formulated in terms of fundamental nuclei by using CUF and the strong form of the principle of virtual displacements. The second-order system of ordinary differential equations is then reduced into a classical eigenvalue problem by assuming simply supported boundary conditions. The proposed methodology is extensively assessed for different solid and thin-walled metallic beam structures and the results are compared with those appeared in published literature and also checked by finite element solutions. The research demonstrates that: (i) the innovative 1D closed form CUF represents a reliable and compact method to develop refined beam models with solely displacement variables; (ii) 3D-like numerically exact solutions of complex structures can be obtained with ease; and (iii) the numerical efficiency of the present method is uniquely robust when compared to other methods that provide similar accuracies.
File in questo prodotto:
File Dimensione Formato  
Dan_Pagani_Carrera_TWS_2015.pdf

Open Access dal 28/10/2017

Descrizione: Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2627349
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo