The chance to move from 2D to 3D approach in the design of the electrical ma- chines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as “ready to press” powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in di ff erent weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.

New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties / Ferraris, Luca; Poskovic, Emir; Franchini, Fausto. - In: AIP ADVANCES. - ISSN 2158-3226. - ELETTRONICO. - 6:5(2016), pp. 056209-1-056209-6. [10.1063/1.4943413]

New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties

FERRARIS, Luca;POSKOVIC, EMIR;FRANCHINI, FAUSTO
2016

Abstract

The chance to move from 2D to 3D approach in the design of the electrical ma- chines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as “ready to press” powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in di ff erent weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.
2016
File in questo prodotto:
File Dimensione Formato  
1.4943413.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2643701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo