Awareness about human impact on mighty climatic changes is radically changing our concept of energy. The thoughtless use of energy slowly leaves our habits and good use of energy is certain the way of a better future. CO2 emission reduction and carbon fossil fuel limitation are the main targets of governmental actions: this is possible thanks to technology improvement as efficient generation from renewable sources and good management of the electricity network. In recent years distributed generation, also of small size, grew up causing new management problems, indeed production from renewable energy sources (RES) is intermittent and unprogrammable. Energy storage systems can be a solution to these problems and pave the way to completely active users, grid parity and smart grid, moreover can be an useful tool to increase electricity access in rural areas. Research on energy storage is intrinsically a multidisciplinary field: storage types, power stages, technologies, topologies, weather, forecast, control algorithms, regulatory, safety and business cases to mention the most importants. In the present work is described the whole design of an energy storage system. First chapters are dedicated to a description of energy storage context, chapters 1 and 2; indeed, it is a matter of fact that in the last years, energy storage became more and more interesting from explicit mention as a tool against climatic changes to first options on the market. The general approach was the realization of a modular energy storage system for residential application, hardware and software design steps are deeply described in chapters 3 and 4. Simulations and tests on the prototype are reported in chapter 5. Finally conclusion and future works are given. At the end of the document some appendices are included to cover specific aspects touched during the work thesis.

Energy Storage as Enabling Technology for Smart Grid / Gandini, Dario. - (2016). [10.6092/polito/porto/2644261]

Energy Storage as Enabling Technology for Smart Grid

GANDINI, DARIO
2016

Abstract

Awareness about human impact on mighty climatic changes is radically changing our concept of energy. The thoughtless use of energy slowly leaves our habits and good use of energy is certain the way of a better future. CO2 emission reduction and carbon fossil fuel limitation are the main targets of governmental actions: this is possible thanks to technology improvement as efficient generation from renewable sources and good management of the electricity network. In recent years distributed generation, also of small size, grew up causing new management problems, indeed production from renewable energy sources (RES) is intermittent and unprogrammable. Energy storage systems can be a solution to these problems and pave the way to completely active users, grid parity and smart grid, moreover can be an useful tool to increase electricity access in rural areas. Research on energy storage is intrinsically a multidisciplinary field: storage types, power stages, technologies, topologies, weather, forecast, control algorithms, regulatory, safety and business cases to mention the most importants. In the present work is described the whole design of an energy storage system. First chapters are dedicated to a description of energy storage context, chapters 1 and 2; indeed, it is a matter of fact that in the last years, energy storage became more and more interesting from explicit mention as a tool against climatic changes to first options on the market. The general approach was the realization of a modular energy storage system for residential application, hardware and software design steps are deeply described in chapters 3 and 4. Simulations and tests on the prototype are reported in chapter 5. Finally conclusion and future works are given. At the end of the document some appendices are included to cover specific aspects touched during the work thesis.
2016
File in questo prodotto:
File Dimensione Formato  
Energy storage as enabling technology for smart grid - Gandini - PhD2016.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2644261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo