Thin rimmed and webbed gears are used in particular applications to reduce systems weight. This kind of gears need an accurate and fail safe design. As a matter of fact, a possible failure, due to bending fatigue, consists in crack nucleation and consequent growth, in particular in the tooth root zone. These cracks may propagate through the tooth or through the rim. Crack propagation direction is basically influenced by the wheel geometry parameters, above all the rim thickness. Studies available in literature emphasize three ranges for the backup ratio values, involving different behaviors. These ranges are related to the crack propagation paths; respectively through the tooth, through the rim and in an unforeseeable way. This last uncertainty zone depends on other parameters, related to both geometry and loading conditions. In this work the effect of wheel speed related to the bending load has been investigated. The investigation has been carried out by means of numerical models involving both 2D finite element and extended finite element models (XFEM). Results shows that both crack initiation point and crack propagation path are strongly influenced by centrifugal load; this effect is mainly evident in the uncertainty zone of the backup ratio.

Effect of centrifugal load on crack path in thin-rimmed and webbed gears / Cura', Francesca Maria; Mura, Andrea; Rosso, Carlo. - In: FRATTURA E INTEGRITÀ STRUTTURALE. - ISSN 1971-8993. - STAMPA. - 9:34(2015), pp. 447-455. [10.3221/IGF-ESIS.34.50]

Effect of centrifugal load on crack path in thin-rimmed and webbed gears

CURA', Francesca Maria;MURA, ANDREA;ROSSO, CARLO
2015

Abstract

Thin rimmed and webbed gears are used in particular applications to reduce systems weight. This kind of gears need an accurate and fail safe design. As a matter of fact, a possible failure, due to bending fatigue, consists in crack nucleation and consequent growth, in particular in the tooth root zone. These cracks may propagate through the tooth or through the rim. Crack propagation direction is basically influenced by the wheel geometry parameters, above all the rim thickness. Studies available in literature emphasize three ranges for the backup ratio values, involving different behaviors. These ranges are related to the crack propagation paths; respectively through the tooth, through the rim and in an unforeseeable way. This last uncertainty zone depends on other parameters, related to both geometry and loading conditions. In this work the effect of wheel speed related to the bending load has been investigated. The investigation has been carried out by means of numerical models involving both 2D finite element and extended finite element models (XFEM). Results shows that both crack initiation point and crack propagation path are strongly influenced by centrifugal load; this effect is mainly evident in the uncertainty zone of the backup ratio.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2646832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo