Electro-discharge machining (EDM) of thin deep features widens processing opportunities of difficult-to-cut materials, such as Ni-based alloys, towards attractive industrial applications. Conversely, the complex interaction between electrical, thermal, and chemical phenomena in EDM thwarts process modeling and prediction. As a matter of fact, recent experimental discoveries encourage setting forth a new theory of discharge ignition in the gap, based on the role of debris, which lays foundations for a recursive mathematical model showing a chaotic evolution. The paper reports on electro-discharge drilling of small deep holes in Inconel 718. Process performances are measured with varying electrode size and geometry, attesting a pivotal effect of gap pollution on productivity and on the onset of a secondary detrimental removal of material by intergranular corrosion. All findings support the emerging model for discharge ignition via debris bridges, and, most notably, debris chains are documented for the first time in the field of metals, second only to a previous case for a ceramic composite. On the whole, the paper provides conclusive validation of the role of debris in the ignition of discharges.

Influence of electrode size and geometry in electro-discharge drilling of Inconel 718 / Bassoli, Elena; Denti, Lucia; Gatto, Andrea; Iuliano, Luca. - In: INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. - ISSN 0268-3768. - ELETTRONICO. - 86:5(2016), pp. 2329-2337. [10.1007/s00170-016-8339-4]

Influence of electrode size and geometry in electro-discharge drilling of Inconel 718

IULIANO, Luca
2016

Abstract

Electro-discharge machining (EDM) of thin deep features widens processing opportunities of difficult-to-cut materials, such as Ni-based alloys, towards attractive industrial applications. Conversely, the complex interaction between electrical, thermal, and chemical phenomena in EDM thwarts process modeling and prediction. As a matter of fact, recent experimental discoveries encourage setting forth a new theory of discharge ignition in the gap, based on the role of debris, which lays foundations for a recursive mathematical model showing a chaotic evolution. The paper reports on electro-discharge drilling of small deep holes in Inconel 718. Process performances are measured with varying electrode size and geometry, attesting a pivotal effect of gap pollution on productivity and on the onset of a secondary detrimental removal of material by intergranular corrosion. All findings support the emerging model for discharge ignition via debris bridges, and, most notably, debris chains are documented for the first time in the field of metals, second only to a previous case for a ceramic composite. On the whole, the paper provides conclusive validation of the role of debris in the ignition of discharges.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2647661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo