A superalloy traditionally offers excellent mechanical strength, resistance to thermal creep deformation, good surface stability and resistance to corrosion or oxidation. However, a superalloy often also needs performance in terms of fretting resistance. Experimental results regarding fretting wear and contact properties of the superalloy René 80 are illustrated and discussed. The widespread applications of superalloys in jointing with friction as in the jointing of a turbine blade, is the main motivation for characterizing their fretting behaviour. The fretting experiments were performed at 100 Hz for two temperatures (600, 800 °C), and two sliding amplitudes (30, 60 µm). These temperatures and strokes are typical at the medium stage of a low-pressure gas turbine. Wear volume and the contact properties such as friction coefficient and tangential contact stiffness were measured and analysed. Results show that the lowest friction coefficient was measured at the temperature of 800 °C. This temperature hence appears to be an optimum working condition for the fretting wear of René 80. With regard to wear mechanism, a fundamental role of the sliding amplitude was found. In particular, the ratio between the sliding amplitude and the characteristic contact length has a significant influence upon the oxide growth on contact surfaces.

Contact Properties and Wear Behaviour of Nickel Based Superalloy René 80 / Lavella, Mario. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 6:7(2016), p. 159. [10.3390/met6070159]

Contact Properties and Wear Behaviour of Nickel Based Superalloy René 80

LAVELLA, MARIO
2016

Abstract

A superalloy traditionally offers excellent mechanical strength, resistance to thermal creep deformation, good surface stability and resistance to corrosion or oxidation. However, a superalloy often also needs performance in terms of fretting resistance. Experimental results regarding fretting wear and contact properties of the superalloy René 80 are illustrated and discussed. The widespread applications of superalloys in jointing with friction as in the jointing of a turbine blade, is the main motivation for characterizing their fretting behaviour. The fretting experiments were performed at 100 Hz for two temperatures (600, 800 °C), and two sliding amplitudes (30, 60 µm). These temperatures and strokes are typical at the medium stage of a low-pressure gas turbine. Wear volume and the contact properties such as friction coefficient and tangential contact stiffness were measured and analysed. Results show that the lowest friction coefficient was measured at the temperature of 800 °C. This temperature hence appears to be an optimum working condition for the fretting wear of René 80. With regard to wear mechanism, a fundamental role of the sliding amplitude was found. In particular, the ratio between the sliding amplitude and the characteristic contact length has a significant influence upon the oxide growth on contact surfaces.
2016
File in questo prodotto:
File Dimensione Formato  
metals-06-00159.pdf

accesso aperto

Descrizione: Articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2657742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo