The corrosion behaviour of binary Al–Sc alloys (Al-0.3Sc and Al-1Sc, wt%) is investigated in de-aerated 0.6 M NaCl solution, performing potentiodynamic polarisation, potentiostatic transients and electrochemical impedance spectroscopy (EIS) measurements complemented with scanning electron microscopy (SEM). In the presence of chloride ions, both Al–Sc alloys experience localised corrosion (pitting). However, increasing Sc alloying addition leads to an increase of the breakdown potential and the extent of passivation domain, indicating improved resistance to initiation of pitting corrosion. Furthermore, EIS measurements performed at the breakdown state evidenced a higher Rct and a lower depression angle value for the Al-1Sc alloy compared to the Al-0.3Sc one, confirming its better localised corrosion behaviour. Spatial distribution and volume fraction of the Al3Sc secondary phase are microstructural features which play a very important role in determining the corrosion resistance of the Al-1Sc alloy.

Assessing the corrosion resistance of binary Al–Sc alloys in chloride-containing environment / Rosalbino, Francesco; Delsante, S.; Borzone, G.; Scavino, Giorgio. - In: MATERIALS AND CORROSION. - ISSN 1521-4176. - ELETTRONICO. - 68:4(2017), pp. 444-449. [10.1002/maco.201609188]

Assessing the corrosion resistance of binary Al–Sc alloys in chloride-containing environment

ROSALBINO, Francesco;SCAVINO, Giorgio
2017

Abstract

The corrosion behaviour of binary Al–Sc alloys (Al-0.3Sc and Al-1Sc, wt%) is investigated in de-aerated 0.6 M NaCl solution, performing potentiodynamic polarisation, potentiostatic transients and electrochemical impedance spectroscopy (EIS) measurements complemented with scanning electron microscopy (SEM). In the presence of chloride ions, both Al–Sc alloys experience localised corrosion (pitting). However, increasing Sc alloying addition leads to an increase of the breakdown potential and the extent of passivation domain, indicating improved resistance to initiation of pitting corrosion. Furthermore, EIS measurements performed at the breakdown state evidenced a higher Rct and a lower depression angle value for the Al-1Sc alloy compared to the Al-0.3Sc one, confirming its better localised corrosion behaviour. Spatial distribution and volume fraction of the Al3Sc secondary phase are microstructural features which play a very important role in determining the corrosion resistance of the Al-1Sc alloy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2669685
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo