We investigate the Hubbard model on the anisotropic triangular lattice with two hopping parameters t and t' in different spatial directions, interpolating between decoupled chains (t = 0) and the isotropic triangular lattice (t = t'). Variational wave functions that include both Jastrow and backflow terms are used to compare spin-liquid and magnetic phases with different pitch vectors describing both collinear and coplanar (spiral) order. For relatively large values of the on-site interaction U/t' >~ 10 and substantial frustration, i.e., 0.3 <~ t/t' <~ 0.8, the spin-liquid state is clearly favored over magnetic states. Spiral magnetic order is only stable in the vicinity of the isotropic point, while collinear order is obtained in a wide range of interchain hoppings from small to intermediate frustration.

We investigate the Hubbard model on the anisotropic triangular lattice with two hopping parameters t and t' in different spatial directions, interpolating between decoupled chains (t = 0) and the isotropic triangular lattice (t = t'). Variational wave functions that include both Jastrow and backflow terms are used to compare spin-liquid and magnetic phases with different pitch vectors describing both collinear and coplanar ( spiral) order. For relatively large values of the on-site interaction U/t' greater than or similar to 10 and substantial frustration, i.e., 0.3 less than or similar to t/t' less than or similar to 0.8, the spin-liquid state is clearly favored over magnetic states. Spiral magnetic order is only stable in the vicinity of the isotropic point, while collinear order is obtained in a wide range of interchain hoppings from small to intermediate frustration.

One-dimensional spin liquid, collinear, and spiral phases from uncoupled chains to the triangular lattice / Tocchio, LUCA FAUSTO; Gros, C; Valenti, R; Becca, F.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - ELETTRONICO. - 89:23(2014), pp. 235107-1-235107-9. [10.1103/PhysRevB.89.235107]

One-dimensional spin liquid, collinear, and spiral phases from uncoupled chains to the triangular lattice

TOCCHIO, LUCA FAUSTO;
2014

Abstract

We investigate the Hubbard model on the anisotropic triangular lattice with two hopping parameters t and t' in different spatial directions, interpolating between decoupled chains (t = 0) and the isotropic triangular lattice (t = t'). Variational wave functions that include both Jastrow and backflow terms are used to compare spin-liquid and magnetic phases with different pitch vectors describing both collinear and coplanar ( spiral) order. For relatively large values of the on-site interaction U/t' greater than or similar to 10 and substantial frustration, i.e., 0.3 less than or similar to t/t' less than or similar to 0.8, the spin-liquid state is clearly favored over magnetic states. Spiral magnetic order is only stable in the vicinity of the isotropic point, while collinear order is obtained in a wide range of interchain hoppings from small to intermediate frustration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2669897
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo