The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain.

GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments / Berardo, Mattia. - (2017). [10.6092/polito/porto/2675456]

GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments

BERARDO, MATTIA
2017

Abstract

The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain.
2017
File in questo prodotto:
File Dimensione Formato  
TesiDottorato_2017.pdf

accesso aperto

Descrizione: Tesi di dottorato di Mattia Berardo - 29 ciclo
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 23.01 MB
Formato Adobe PDF
23.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2675456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo