Field-Coupled nanocomputing (FCN) paradigms offer fundamentally new approaches for digital computing without involving current transistors. Such paradigms perform computations using local field interactions between nanoscale building blocks which are organized with purposes. Among several FCN paradigms currently under active investigation, the Molecular Quantum-dot Cellular Automata (MQCA) is found to be the most promising and its unique features make it attractive as a candidate for post-CMOS nanocomputing. MQCA is based on electrostatic interactions among quantum cells with nanometer scale eliminating the need of charge transportation, hence its energy consumption is significantly decreased. Meanwhile it also possesses the potential of high throughput if efficient pipelining of information propagation is introduced. This could be realized adopting external clock signals which precisely control the adiabatic switching and direction of data flow in MQCA circuits. In this work, in order to model MQCA as electronic devices and analyze its information propagation with clock taken into account, an effective algorithm based on ab-initio simulations and modelling of molecular interactions has been applied in presence of a proposed clock mechanism for MQCA, including the binary wire, the wire bus and the majority voter. The quantitative results generated depict compelling clocked information propagation phenomena of MQCA devices and most importantly, provide crucial feedback for future MQCA experimental implementations

ANALYSIS AND MODULATION OF MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA) DEVICES / Wang, Ruiyu. - (2017). [10.6092/polito/porto/2677716]

ANALYSIS AND MODULATION OF MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA) DEVICES

WANG, RUIYU
2017

Abstract

Field-Coupled nanocomputing (FCN) paradigms offer fundamentally new approaches for digital computing without involving current transistors. Such paradigms perform computations using local field interactions between nanoscale building blocks which are organized with purposes. Among several FCN paradigms currently under active investigation, the Molecular Quantum-dot Cellular Automata (MQCA) is found to be the most promising and its unique features make it attractive as a candidate for post-CMOS nanocomputing. MQCA is based on electrostatic interactions among quantum cells with nanometer scale eliminating the need of charge transportation, hence its energy consumption is significantly decreased. Meanwhile it also possesses the potential of high throughput if efficient pipelining of information propagation is introduced. This could be realized adopting external clock signals which precisely control the adiabatic switching and direction of data flow in MQCA circuits. In this work, in order to model MQCA as electronic devices and analyze its information propagation with clock taken into account, an effective algorithm based on ab-initio simulations and modelling of molecular interactions has been applied in presence of a proposed clock mechanism for MQCA, including the binary wire, the wire bus and the majority voter. The quantitative results generated depict compelling clocked information propagation phenomena of MQCA devices and most importantly, provide crucial feedback for future MQCA experimental implementations
2017
File in questo prodotto:
File Dimensione Formato  
PhD-thesis-WangRuiyu-final version.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 14.16 MB
Formato Adobe PDF
14.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2677716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo