Molecular dynamics is here used to elucidate the mechanism of protein stabilization by carbohydrates and other additives during freezing. More specifically, we used molecular dynamics simulations to obtain a quantitative estimation of the capability of various cryoprotectants to preserve a model protein, the human growth hormone, against freezing stresses. Three mechanisms were investigated, preferential exclusion, water replacement, and vitrification. Model simulations were finally validated upon experimental data in terms of the ability of excipients to prevent protein aggregation. Overall, we found that the preferential exclusion and vitrification mechanisms are important during the whole freezing process, while water replacement becomes dominant only toward the end of the cryoconcentration phase. The disaccharides were found to be the most efficient excipients, in regard to both preferential exclusion and water replacement. Moreover, sugars were in general more efficient than other excipients, such as glycine or sorbitol.

Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study / Arsiccio, Andrea; Pisano, Roberto. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 121:37(2017), pp. 8652-8660. [10.1021/acs.jpcb.7b05541]

Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study

ARSICCIO, ANDREA;PISANO, ROBERTO
2017

Abstract

Molecular dynamics is here used to elucidate the mechanism of protein stabilization by carbohydrates and other additives during freezing. More specifically, we used molecular dynamics simulations to obtain a quantitative estimation of the capability of various cryoprotectants to preserve a model protein, the human growth hormone, against freezing stresses. Three mechanisms were investigated, preferential exclusion, water replacement, and vitrification. Model simulations were finally validated upon experimental data in terms of the ability of excipients to prevent protein aggregation. Overall, we found that the preferential exclusion and vitrification mechanisms are important during the whole freezing process, while water replacement becomes dominant only toward the end of the cryoconcentration phase. The disaccharides were found to be the most efficient excipients, in regard to both preferential exclusion and water replacement. Moreover, sugars were in general more efficient than other excipients, such as glycine or sorbitol.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2684125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo