Electromagnetic band-gap (EBG) surfaces have found applications in mitigation of parallel-plate noise that occurs in high speed circuits. A 2D periodic structure previously introduced by the same authors is dimensioned here for adjusting EBG parameters in view of meeting applications requirements by decreasing the phase velocity of the propagating waves. This adjustment corresponds to decreasing the lower bound of the EBG spectra. The positions of the EBGs' in frequency are determined through full-wave simulation, by solving the corresponding eigenmode equation and by imposing the appropriate boundary conditions on all faces of the unit cell. The operation of a device relying on a finite surface is also demonstrated. Obtained results show that the proposed structure fits for the signal integrity related applications as verified also by comparing the transmission along a finite structure of an ideal signal line and one with an induced discontinuity.

Signal integrity applications of an EBG surface / Matekovits, Ladislau; De Sabata, Aldo. - In: ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING. - ISSN 1582-7445. - ELETTRONICO. - 15:2(2015), pp. 3-8. [10.4316/AECE.2015.02001]

Signal integrity applications of an EBG surface

Matekovits, Ladislau;
2015

Abstract

Electromagnetic band-gap (EBG) surfaces have found applications in mitigation of parallel-plate noise that occurs in high speed circuits. A 2D periodic structure previously introduced by the same authors is dimensioned here for adjusting EBG parameters in view of meeting applications requirements by decreasing the phase velocity of the propagating waves. This adjustment corresponds to decreasing the lower bound of the EBG spectra. The positions of the EBGs' in frequency are determined through full-wave simulation, by solving the corresponding eigenmode equation and by imposing the appropriate boundary conditions on all faces of the unit cell. The operation of a device relying on a finite surface is also demonstrated. Obtained results show that the proposed structure fits for the signal integrity related applications as verified also by comparing the transmission along a finite structure of an ideal signal line and one with an induced discontinuity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2693128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo