The effective electric charge of a nanoparticle in an ionic magnetic colloidal system (an ionic ferrofluid) is determined by using the impedance spectroscopy technique. The electric response of the samples to a harmonic external electric field excitation is described by means of the Poisson- Nernst-Planck model. The model proposed for the theoretical interpretation of the impedance spectroscopy data considers that the magnetic particles are electrically charged with Hþ and have in their vicinity Cl counterions, resulting in an effective charge Qeff. In the presence of an harmonic, in time, external field (frequency bigger than 104Hz) particles are assumed to be at rest, due to inertial reason. In this framework, the response of the cell is due to the Hþ and Cl present in the solution. From the spectra of the real and imaginary components of the electric impedance of the cell, by means of a best fit procedure to our model, we derive the effective electric charge of the magnetic particles and the bulk density of ions. From an independent measurement of the f-potential of the suspension, it is possible to calculate the hydrodynamic radius of the particle, in good agreement with that independently measured.

Electric response of a magnetic colloid to periodic external excitation for different nanoparticles concentrations: Determination of the particles' effective charge / Batalioto, F.; Barbero, Giovanni; Sehnem, A. L.; Figueiredo Neto, A. M.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 120:5(2016), p. 054304. [10.1063/1.4960405]

Electric response of a magnetic colloid to periodic external excitation for different nanoparticles concentrations: Determination of the particles' effective charge

BARBERO, GIOVANNI;
2016

Abstract

The effective electric charge of a nanoparticle in an ionic magnetic colloidal system (an ionic ferrofluid) is determined by using the impedance spectroscopy technique. The electric response of the samples to a harmonic external electric field excitation is described by means of the Poisson- Nernst-Planck model. The model proposed for the theoretical interpretation of the impedance spectroscopy data considers that the magnetic particles are electrically charged with Hþ and have in their vicinity Cl counterions, resulting in an effective charge Qeff. In the presence of an harmonic, in time, external field (frequency bigger than 104Hz) particles are assumed to be at rest, due to inertial reason. In this framework, the response of the cell is due to the Hþ and Cl present in the solution. From the spectra of the real and imaginary components of the electric impedance of the cell, by means of a best fit procedure to our model, we derive the effective electric charge of the magnetic particles and the bulk density of ions. From an independent measurement of the f-potential of the suspension, it is possible to calculate the hydrodynamic radius of the particle, in good agreement with that independently measured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2669731
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo