The Pulse Width Modulation (PWM) technique is commonly used to supply modern high-speed electrical machines. The fundamental frequency is typically in the kilohertz range, with switching frequencies of several tens of kilohertz, as determined by the new SiC or GaAs based power transistors modules. Switching introduces minor loops in the major hysteresis cycle, with durations of the order of 100 μs or lower, with the resulting magnetization dynamics influenced by strong skin effect. However, since these minor loops have relatively small amplitude, their constitutive equation may be described by an equivalent permeability (real or complex), depending on the mean slope of the minor loop and its static energy loss. By retrieving this permeability, the classical loss is straightforwardly calculated by analytical solution of the Maxwell’s equations. In this work, we measure and calculate, according to the quasi-linear approximation for the minor loops, the magnetic energy losses of 0.194 mm thick non-oriented Fe-Si 3.2% sheets subjected to PWM induction waveform. Minor loop peak amplitudes ranging between 50 mT and 0.2 T and frequencies up to 10 kHz are investigated. The results are consistent with the proposed model, to within 5%.

Magnetic loss versus frequency in non-oriented steel sheets and its prediction: minor loops, PWM, and the limits of the analytical approach / Zhao, Hanyu; Ragusa, CARLO STEFANO; de la Barriere, Olivier; Khan, Mahmood; Appino, Carlo; Fiorillo, Fausto. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - STAMPA. - 53:11(2017). [10.1109/TMAG.2017.2701299]

Magnetic loss versus frequency in non-oriented steel sheets and its prediction: minor loops, PWM, and the limits of the analytical approach

ZHAO, HANYU;RAGUSA, CARLO STEFANO;KHAN, MAHMOOD;
2017

Abstract

The Pulse Width Modulation (PWM) technique is commonly used to supply modern high-speed electrical machines. The fundamental frequency is typically in the kilohertz range, with switching frequencies of several tens of kilohertz, as determined by the new SiC or GaAs based power transistors modules. Switching introduces minor loops in the major hysteresis cycle, with durations of the order of 100 μs or lower, with the resulting magnetization dynamics influenced by strong skin effect. However, since these minor loops have relatively small amplitude, their constitutive equation may be described by an equivalent permeability (real or complex), depending on the mean slope of the minor loop and its static energy loss. By retrieving this permeability, the classical loss is straightforwardly calculated by analytical solution of the Maxwell’s equations. In this work, we measure and calculate, according to the quasi-linear approximation for the minor loops, the magnetic energy losses of 0.194 mm thick non-oriented Fe-Si 3.2% sheets subjected to PWM induction waveform. Minor loop peak amplitudes ranging between 50 mT and 0.2 T and frequencies up to 10 kHz are investigated. The results are consistent with the proposed model, to within 5%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2673221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo