Smart Environments (SmE) are intelligent and complex due to smart connectivity and interaction of heterogeneous devices achieved by complicated and sophisticated computing algorithms. Based on their domotic and industrial applications, SmE system may be critical in terms of correctness, reliability, safety, security and other such vital factors. To achieve error-free and requirement-compliant implementation of these systems, it is advisable to enforce a design process that may guarantee these factors by adopting formal models and formal verification techniques at design time. The e-Lite research group at Politecnico di Torino is developing solutions for SmE based on integration of commercially available home automation technologies with an intelligent ecosystem based on a central OSGi-based gateway, and distributed collaboration of intelligent applications, with the help of semantic web technologies and applications. The main goal of my research is to study new methodologies which are used for the modeling and verification of SmE. This goal includes the development of a formal methodology which ensures the reliable implementation of the requirements on SmE, by modeling and verifying each component (users, devices, control algorithms and environment/context) and the interaction among them, especially at various stages in design time, so that all the complexities and ambiguities can be reduced.

Design Time Methodology for the Formal Modeling and Verification of Smart Environments / Sanaullah, Muhammad. - (2014). [10.6092/polito/porto/2536725]

Design Time Methodology for the Formal Modeling and Verification of Smart Environments

SANAULLAH, MUHAMMAD
2014

Abstract

Smart Environments (SmE) are intelligent and complex due to smart connectivity and interaction of heterogeneous devices achieved by complicated and sophisticated computing algorithms. Based on their domotic and industrial applications, SmE system may be critical in terms of correctness, reliability, safety, security and other such vital factors. To achieve error-free and requirement-compliant implementation of these systems, it is advisable to enforce a design process that may guarantee these factors by adopting formal models and formal verification techniques at design time. The e-Lite research group at Politecnico di Torino is developing solutions for SmE based on integration of commercially available home automation technologies with an intelligent ecosystem based on a central OSGi-based gateway, and distributed collaboration of intelligent applications, with the help of semantic web technologies and applications. The main goal of my research is to study new methodologies which are used for the modeling and verification of SmE. This goal includes the development of a formal methodology which ensures the reliable implementation of the requirements on SmE, by modeling and verifying each component (users, devices, control algorithms and environment/context) and the interaction among them, especially at various stages in design time, so that all the complexities and ambiguities can be reduced.
2014
File in questo prodotto:
File Dimensione Formato  
Thesis_main.pdf

Open Access dal 25/03/2014

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 5.27 MB
Formato Adobe PDF
5.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2536725
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo