A new fracture criterion able to predict crack onset and propagation at interfaces between solids is formulated, implemented in a computational code and applied to a particular problem in composites on a microscale. More specifically, this criterion is used to study the debond onset and propagation in mixed mode in the case of a single fibre subjected to a biaxial remote loading. The fracture criterion formulation is based on the Linear Elastic-(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics (FFM) approach, where the stress and energy criteria are suitably coupled. Each of these criteria is a necessary but not sufficient condition for crack onset and propagation. Two empirical mixed-mode fracture criteria are considered and tested: the interface fracture toughness law by Hutchinson and Suo and the quadratic stress criterion. The FFM + LEBIM approach developed offers an adequate characterization of the interface stiffness in contrast to the too restrictive, original LEBIM formulation.

Crack onset and propagation at fibre-matrix elastic interfaces under biaxial loading using finite fracture mechanics / Muñoz Reja, M; Távara, L.; Mantič, V.; Cornetti, Pietro. - In: COMPOSITES. PART A: APPLIED SCIENCE AND MANUFACTURING. - ISSN 1359-835X. - STAMPA. - 82:(2016), pp. 267-278. [10.1016/j.compositesa.2015.09.023]

Crack onset and propagation at fibre-matrix elastic interfaces under biaxial loading using finite fracture mechanics

CORNETTI, PIETRO
2016

Abstract

A new fracture criterion able to predict crack onset and propagation at interfaces between solids is formulated, implemented in a computational code and applied to a particular problem in composites on a microscale. More specifically, this criterion is used to study the debond onset and propagation in mixed mode in the case of a single fibre subjected to a biaxial remote loading. The fracture criterion formulation is based on the Linear Elastic-(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics (FFM) approach, where the stress and energy criteria are suitably coupled. Each of these criteria is a necessary but not sufficient condition for crack onset and propagation. Two empirical mixed-mode fracture criteria are considered and tested: the interface fracture toughness law by Hutchinson and Suo and the quadratic stress criterion. The FFM + LEBIM approach developed offers an adequate characterization of the interface stiffness in contrast to the too restrictive, original LEBIM formulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2655854
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo